International Journal of Forecasting最新文献

筛选
英文 中文
Guerard John B., Macmillan Palgrave, The leading economic indicators and business cycles in the United States:100 年经验证据与未来机遇》(2022 年),650 页,ISBN 978-3-030-99417-4,精装书,79.99 美元
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-01-22 DOI: 10.1016/j.ijforecast.2023.12.008
{"title":"","authors":"","doi":"10.1016/j.ijforecast.2023.12.008","DOIUrl":"10.1016/j.ijforecast.2023.12.008","url":null,"abstract":"","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1505-1506"},"PeriodicalIF":6.9,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Innovations in hierarchical forecasting 社论:分层预测的创新
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-01-22 DOI: 10.1016/j.ijforecast.2024.01.003
George Athanasopoulos, Rob J. Hyndman, Nikolaos Kourentzes, Anastasios Panagiotelis
{"title":"Editorial: Innovations in hierarchical forecasting","authors":"George Athanasopoulos, Rob J. Hyndman, Nikolaos Kourentzes, Anastasios Panagiotelis","doi":"10.1016/j.ijforecast.2024.01.003","DOIUrl":"10.1016/j.ijforecast.2024.01.003","url":null,"abstract":"","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 2","pages":"Pages 427-429"},"PeriodicalIF":7.9,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRPS-based online learning for nonlinear probabilistic forecast combination 基于 CRPS 的非线性概率预测组合在线学习
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-01-20 DOI: 10.1016/j.ijforecast.2023.12.005
{"title":"CRPS-based online learning for nonlinear probabilistic forecast combination","authors":"","doi":"10.1016/j.ijforecast.2023.12.005","DOIUrl":"10.1016/j.ijforecast.2023.12.005","url":null,"abstract":"<div><p>Forecast combination improves upon the component forecasts. Most often, combination approaches are restricted to the linear setting only. However, theory shows that if the component forecasts are neutrally dispersed—a requirement for probabilistic calibration—linear forecast combination will only increase dispersion and thus lead to miscalibration. Furthermore, the accuracy of the component forecasts may vary over time and the combination weights should vary accordingly, necessitating updates as time progresses. In this paper, we develop an online version of the beta-transformed linear pool, which theoretically can transform the probabilistic forecasts such that they are neutrally dispersed. We show that, in the case of stationary synthetic time series, the performance of the developed method converges to that of the optimal combination in hindsight. Moreover, in the case of nonstationary real-world time series from a wind farm in mid-west France, the developed model outperforms the optimal combination in hindsight.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1449-1466"},"PeriodicalIF":6.9,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139516222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecasting seasonal demand for retail: A Fourier time-varying grey model 预测零售业的季节性需求:傅立叶时变灰色模型
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-01-18 DOI: 10.1016/j.ijforecast.2023.12.006
{"title":"Forecasting seasonal demand for retail: A Fourier time-varying grey model","authors":"","doi":"10.1016/j.ijforecast.2023.12.006","DOIUrl":"10.1016/j.ijforecast.2023.12.006","url":null,"abstract":"<div><p><span>Seasonal demand forecasting is critical for effective supply chain management. However, conventional forecasting methods </span>face difficulties accurately estimating seasonal variations, owing to time-varying demand trends and limited data availability. In this paper, we propose a Fourier time-varying grey model (FTGM) to tackle this issue. The FTGM builds upon grey models, which are effective with limited data, and leverages Fourier functions to approximate time-varying parameters that allow it to represent seasonal variations. A data-driven selection algorithm adaptively determines the appropriate Fourier order of the FTGM without prior knowledge of data characteristics. Using the well-known M5 competition data, we compare our model with state-of-the-art forecasting methods taken from grey models, statistical methods, and architectures of neural network-based methods. The experimental results show that the FTGM outperforms popular seasonal forecasting methods in terms of standard accuracy metrics, providing a competitive alternative for seasonal demand forecasting in retail companies.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1467-1485"},"PeriodicalIF":6.9,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139516015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of the reconciled distributions for Gaussian and count forecasts 高斯预测和计数预测的协调分布特性
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-01-12 DOI: 10.1016/j.ijforecast.2023.12.004
{"title":"Properties of the reconciled distributions for Gaussian and count forecasts","authors":"","doi":"10.1016/j.ijforecast.2023.12.004","DOIUrl":"10.1016/j.ijforecast.2023.12.004","url":null,"abstract":"<div><p>Reconciliation enforces coherence between hierarchical forecasts, in order to satisfy a set of linear constraints. While most works focus on the reconciliation of point forecasts, we consider probabilistic reconciliation and we analyze the properties of distributions reconciled via conditioning. We provide a formal analysis of the variance of the reconciled distribution, treating the case of Gaussian and count forecasts separately. We also study the reconciled upper mean in the case of one-level hierarchies, again treating Gaussian and count forecasts separately. We then show experiments on the reconciliation of intermittent time series related to the count of extreme market events. The experiments confirm our theoretical results and show that reconciliation largely improves the performance of probabilistic forecasting.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1438-1448"},"PeriodicalIF":6.9,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016920702300136X/pdfft?md5=9e8e80067e02ac1e611fc1ae1e5aec76&pid=1-s2.0-S016920702300136X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139496821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgement to reviewers 鸣谢审稿人
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-01-08 DOI: 10.1016/j.ijforecast.2023.12.001
{"title":"Acknowledgement to reviewers","authors":"","doi":"10.1016/j.ijforecast.2023.12.001","DOIUrl":"10.1016/j.ijforecast.2023.12.001","url":null,"abstract":"","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 2","pages":"Pages 855-857"},"PeriodicalIF":7.9,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139398219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thinking outside the container: A sparse partial least squares approach to forecasting trade flows 集装箱外的思考:预测贸易流量的稀疏偏最小二乘法
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-01-04 DOI: 10.1016/j.ijforecast.2023.11.007
{"title":"Thinking outside the container: A sparse partial least squares approach to forecasting trade flows","authors":"","doi":"10.1016/j.ijforecast.2023.11.007","DOIUrl":"10.1016/j.ijforecast.2023.11.007","url":null,"abstract":"<div><p>Global container ship movements may reliably predict trade flows. First, this paper provides the methodology to construct maritime shipping time series from a dataset comprising millions of container vessel positions annually. Second, to forecast monthly goods trade using these time series, this study outlines the use of the least absolute shrinkage and selection operator (LASSO) in combination with a partial least squares process (PLS). An expanding window, out-of-sample exercise demonstrates that constructed forecasts outperform benchmark models for the vast majority of 76 countries and regions. The performance holds true for unilateral and bilateral trade flows, for trade of developed and developing countries, for real and nominal trade, as well as for time periods of economic crisis such as the COVID-19 pandemic. The resulting forecasts of trade flows precede official statistics by several months and may facilitate quantification of supply chain disruptions and trade wars.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1336-1358"},"PeriodicalIF":6.9,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016920702300122X/pdfft?md5=fa38013c58ded3f31d0c99997def111f&pid=1-s2.0-S016920702300122X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139394294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecasting day-ahead expected shortfall on the EUR/USD exchange rate: The (I)relevance of implied volatility 预测欧元/美元汇率的当日预期缺口:隐含波动率的(I)相关性
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-01-04 DOI: 10.1016/j.ijforecast.2023.11.003
{"title":"Forecasting day-ahead expected shortfall on the EUR/USD exchange rate: The (I)relevance of implied volatility","authors":"","doi":"10.1016/j.ijforecast.2023.11.003","DOIUrl":"10.1016/j.ijforecast.2023.11.003","url":null,"abstract":"<div><p><span><span>The existing literature provides mixed results on the usefulness of implied volatility for managing risky assets, while evidence for expected shortfall predictions is almost nonexistent. Given its forward-looking nature, implied volatility might be more valuable than backward-looking measures of realized price fluctuations. Conversely, the volatility risk premium embedded in implied volatility leads to overestimating the observed price variation. This paper explores the benefits of augmenting econometric models used in forecasting the expected shortfall, a risk measured endorsed in the Basel III Accord, with information on implied volatility obtained from EUR/USD </span>option contracts<span>. The day-ahead forecasts are obtained from several classes of econometric models: historical simulation, EGARCH, </span></span>quantile regression-based HAR, joint VaR and ES model, and combination forecasts. We verify whether the resulting expected shortfall forecasts are well-specified and test the models’ accuracy. Our results provide evidence that the information provided by forward-looking implied volatility is more valuable than that in backward-looking realized measures. These results hold across multiple model specifications, are stable over time, hold under alternative loss functions, and are more pronounced during periods of higher market uncertainty when risk modeling matters most.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1275-1301"},"PeriodicalIF":6.9,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139374581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A probabilistic forecast methodology for volatile electricity prices in the Australian National Electricity Market 澳大利亚全国电力市场波动电价的概率预测方法
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-01-03 DOI: 10.1016/j.ijforecast.2023.12.003
{"title":"A probabilistic forecast methodology for volatile electricity prices in the Australian National Electricity Market","authors":"","doi":"10.1016/j.ijforecast.2023.12.003","DOIUrl":"10.1016/j.ijforecast.2023.12.003","url":null,"abstract":"<div><p>The South Australia region of the Australian National Electricity Market (NEM) displays some of the highest levels of price volatility observed in modern electricity markets. This paper outlines an approach to probabilistic forecasting under these extreme conditions, including spike filtration and several post-processing steps. We propose using quantile regression as an ensemble tool for probabilistic forecasting, with our combined forecasts achieving superior results compared to all constituent models. Within our ensemble framework, we demonstrate that averaging models with varying training-length periods leads to a more adaptive model and increased prediction accuracy. The applicability of the final model is evaluated by comparing our median forecasts with the point forecasts available from the Australian NEM operator, with our model outperforming these NEM forecasts by a significant margin.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1421-1437"},"PeriodicalIF":6.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001358/pdfft?md5=ade3ae549bbe5d6169dda529d773ee26&pid=1-s2.0-S0169207023001358-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139374481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecast reconciliation: A review 预测调节:回顾
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2023-12-29 DOI: 10.1016/j.ijforecast.2023.10.010
George Athanasopoulos , Rob J. Hyndman , Nikolaos Kourentzes , Anastasios Panagiotelis
{"title":"Forecast reconciliation: A review","authors":"George Athanasopoulos ,&nbsp;Rob J. Hyndman ,&nbsp;Nikolaos Kourentzes ,&nbsp;Anastasios Panagiotelis","doi":"10.1016/j.ijforecast.2023.10.010","DOIUrl":"10.1016/j.ijforecast.2023.10.010","url":null,"abstract":"<div><p>Collections of time series formed via aggregation are prevalent in many fields. These are commonly referred to as hierarchical time series and may be constructed cross-sectionally across different variables, temporally by aggregating a single series at different frequencies, or even generalised beyond aggregation as time series that respect linear constraints. When forecasting such time series, a desirable condition is for forecasts to be coherent: to respect the constraints. The past decades have seen substantial growth in this field with the development of reconciliation methods that ensure coherent forecasts and improve forecast accuracy. This paper serves as a comprehensive review of forecast reconciliation and an entry point for researchers and practitioners dealing with hierarchical time series. The scope of the article includes perspectives on forecast reconciliation from machine learning, Bayesian statistics and probabilistic forecasting, as well as applications in economics, energy, tourism, retail demand and demography.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 2","pages":"Pages 430-456"},"PeriodicalIF":7.9,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001097/pdfft?md5=22d99799cd25ab98a5a7ae5145f1d7e2&pid=1-s2.0-S0169207023001097-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信