{"title":"Interpretable water level forecaster with spatiotemporal causal attention mechanisms","authors":"Sungchul Hong , Yunjin Choi , Jong-June Jeon","doi":"10.1016/j.ijforecast.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate forecasting of river water levels is vital for effectively managing traffic flow and mitigating the risks associated with natural disasters. This task presents challenges due to the intricate factors influencing the flow of a river. Recent advances in machine learning have introduced numerous effective forecasting methods. However, these methods lack interpretability due to their complex structure, resulting in limited reliability. Addressing this issue, this study proposes a deep learning model that quantifies interpretability, with an emphasis on water level forecasting. This model focuses on generating quantitative interpretability measurements, which align with the common knowledge embedded in the input data. This is facilitated by the utilization of a transformer architecture that is purposefully designed with masking, incorporating a multi-layer network that captures spatiotemporal causation. We perform a comparative analysis on the Han River dataset obtained from Seoul, South Korea, from 2016 to 2021. The results illustrate that our approach offers enhanced interpretability consistent with common knowledge, outperforming competing methods. The approach also enhances robustness against distribution shift.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 3","pages":"Pages 1037-1054"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024001043","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate forecasting of river water levels is vital for effectively managing traffic flow and mitigating the risks associated with natural disasters. This task presents challenges due to the intricate factors influencing the flow of a river. Recent advances in machine learning have introduced numerous effective forecasting methods. However, these methods lack interpretability due to their complex structure, resulting in limited reliability. Addressing this issue, this study proposes a deep learning model that quantifies interpretability, with an emphasis on water level forecasting. This model focuses on generating quantitative interpretability measurements, which align with the common knowledge embedded in the input data. This is facilitated by the utilization of a transformer architecture that is purposefully designed with masking, incorporating a multi-layer network that captures spatiotemporal causation. We perform a comparative analysis on the Han River dataset obtained from Seoul, South Korea, from 2016 to 2021. The results illustrate that our approach offers enhanced interpretability consistent with common knowledge, outperforming competing methods. The approach also enhances robustness against distribution shift.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.