Spyros Makridakis , Evangelos Spiliotis , Maria Michailidis
{"title":"避免过度自信:来自M6金融竞争的证据","authors":"Spyros Makridakis , Evangelos Spiliotis , Maria Michailidis","doi":"10.1016/j.ijforecast.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>The M6 competition aimed to identify methods that can accurately forecast asset returns and exploit such forecasts to make efficient investments. Specifically, the forecasting track of the competition required participants to estimate the probability that each of the 100 selected assets would be ranked within the first, second, third, fourth, or fifth quintile with regards to their relative percentage returns. Overall, less than 25% of the teams managed to estimate the probabilities more precisely than a benchmark that assumed equal probabilities for all quintiles. Moreover, those that did so reported inconsistent performance across the 12 submission points and minor forecast accuracy improvements. We identify price volatility as a key driver of forecast deterioration and show that avoiding overconfidence by assuming similar probabilities for symmetric quintiles can improve both forecast accuracy and portfolio efficiency. Interestingly, our findings hold true even when simple methods are employed to estimate the base predictions and investment weights.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 4","pages":"Pages 1395-1403"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avoiding overconfidence: Evidence from the M6 financial competition\",\"authors\":\"Spyros Makridakis , Evangelos Spiliotis , Maria Michailidis\",\"doi\":\"10.1016/j.ijforecast.2024.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The M6 competition aimed to identify methods that can accurately forecast asset returns and exploit such forecasts to make efficient investments. Specifically, the forecasting track of the competition required participants to estimate the probability that each of the 100 selected assets would be ranked within the first, second, third, fourth, or fifth quintile with regards to their relative percentage returns. Overall, less than 25% of the teams managed to estimate the probabilities more precisely than a benchmark that assumed equal probabilities for all quintiles. Moreover, those that did so reported inconsistent performance across the 12 submission points and minor forecast accuracy improvements. We identify price volatility as a key driver of forecast deterioration and show that avoiding overconfidence by assuming similar probabilities for symmetric quintiles can improve both forecast accuracy and portfolio efficiency. Interestingly, our findings hold true even when simple methods are employed to estimate the base predictions and investment weights.</div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 4\",\"pages\":\"Pages 1395-1403\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016920702400102X\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016920702400102X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Avoiding overconfidence: Evidence from the M6 financial competition
The M6 competition aimed to identify methods that can accurately forecast asset returns and exploit such forecasts to make efficient investments. Specifically, the forecasting track of the competition required participants to estimate the probability that each of the 100 selected assets would be ranked within the first, second, third, fourth, or fifth quintile with regards to their relative percentage returns. Overall, less than 25% of the teams managed to estimate the probabilities more precisely than a benchmark that assumed equal probabilities for all quintiles. Moreover, those that did so reported inconsistent performance across the 12 submission points and minor forecast accuracy improvements. We identify price volatility as a key driver of forecast deterioration and show that avoiding overconfidence by assuming similar probabilities for symmetric quintiles can improve both forecast accuracy and portfolio efficiency. Interestingly, our findings hold true even when simple methods are employed to estimate the base predictions and investment weights.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.