{"title":"具有强依赖性的相等预测精度的测试","authors":"Laura Coroneo , Fabrizio Iacone","doi":"10.1016/j.ijforecast.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>We analyse the properties of the Diebold and Mariano (1995) test in the presence of autocorrelation in the loss differential. We show that the power of the Diebold and Mariano (1995) test decreases as the dependence increases, making it more difficult to obtain statistically significant evidence of superior predictive ability against less accurate benchmarks. We also find that, after a certain threshold, the test has no power, and the correct null hypothesis is spuriously rejected. These results caution us to seriously consider the loss differential’s dependence properties before applying the Diebold and Mariano (1995) test.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 3","pages":"Pages 1073-1092"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing for equal predictive accuracy with strong dependence\",\"authors\":\"Laura Coroneo , Fabrizio Iacone\",\"doi\":\"10.1016/j.ijforecast.2024.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We analyse the properties of the Diebold and Mariano (1995) test in the presence of autocorrelation in the loss differential. We show that the power of the Diebold and Mariano (1995) test decreases as the dependence increases, making it more difficult to obtain statistically significant evidence of superior predictive ability against less accurate benchmarks. We also find that, after a certain threshold, the test has no power, and the correct null hypothesis is spuriously rejected. These results caution us to seriously consider the loss differential’s dependence properties before applying the Diebold and Mariano (1995) test.</div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 3\",\"pages\":\"Pages 1073-1092\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207024001067\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024001067","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Testing for equal predictive accuracy with strong dependence
We analyse the properties of the Diebold and Mariano (1995) test in the presence of autocorrelation in the loss differential. We show that the power of the Diebold and Mariano (1995) test decreases as the dependence increases, making it more difficult to obtain statistically significant evidence of superior predictive ability against less accurate benchmarks. We also find that, after a certain threshold, the test has no power, and the correct null hypothesis is spuriously rejected. These results caution us to seriously consider the loss differential’s dependence properties before applying the Diebold and Mariano (1995) test.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.