通过聚类构造分层时间序列:是否有最优的预测方法?

IF 6.9 2区 经济学 Q1 ECONOMICS
Bohan Zhang , Anastasios Panagiotelis , Han Li
{"title":"通过聚类构造分层时间序列:是否有最优的预测方法?","authors":"Bohan Zhang ,&nbsp;Anastasios Panagiotelis ,&nbsp;Han Li","doi":"10.1016/j.ijforecast.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Forecast reconciliation has attracted significant research interest in recent years, with most studies taking the hierarchy of time series as given. We extend existing work that uses time series clustering to construct hierarchies to improve forecast accuracy in three ways. First, we investigate multiple approaches to clustering, including different clustering algorithms, how time series are represented, and how the distance between time series is defined. We find that cluster-based hierarchies improve forecast accuracy relative to two-level hierarchies. Second, we devise an approach based on random permutation of hierarchies, keeping the hierarchy structure fixed while time series are randomly allocated to clusters. In doing so, we find that improvements in forecast accuracy that accrue from using clustering do not arise from grouping similar series but from the structure of the hierarchy. Third, we propose an approach based on averaging forecasts across hierarchies constructed using different clustering methods that is shown to outperform any single clustering method. All analysis is carried out on two benchmark datasets and a simulated dataset. Our findings provide new insights into the role of hierarchy construction in forecast reconciliation and offer valuable guidance on forecasting practice.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 3","pages":"Pages 1022-1036"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing hierarchical time series through clustering: Is there an optimal way for forecasting?\",\"authors\":\"Bohan Zhang ,&nbsp;Anastasios Panagiotelis ,&nbsp;Han Li\",\"doi\":\"10.1016/j.ijforecast.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Forecast reconciliation has attracted significant research interest in recent years, with most studies taking the hierarchy of time series as given. We extend existing work that uses time series clustering to construct hierarchies to improve forecast accuracy in three ways. First, we investigate multiple approaches to clustering, including different clustering algorithms, how time series are represented, and how the distance between time series is defined. We find that cluster-based hierarchies improve forecast accuracy relative to two-level hierarchies. Second, we devise an approach based on random permutation of hierarchies, keeping the hierarchy structure fixed while time series are randomly allocated to clusters. In doing so, we find that improvements in forecast accuracy that accrue from using clustering do not arise from grouping similar series but from the structure of the hierarchy. Third, we propose an approach based on averaging forecasts across hierarchies constructed using different clustering methods that is shown to outperform any single clustering method. All analysis is carried out on two benchmark datasets and a simulated dataset. Our findings provide new insights into the role of hierarchy construction in forecast reconciliation and offer valuable guidance on forecasting practice.</div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 3\",\"pages\":\"Pages 1022-1036\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207024001031\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024001031","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

预测调和是近年来的研究热点,大多数研究都将时间序列的层次结构作为给定条件。我们扩展了现有的工作,使用时间序列聚类来构建层次结构,以三种方式提高预测精度。首先,我们研究了多种聚类方法,包括不同的聚类算法,如何表示时间序列,以及如何定义时间序列之间的距离。我们发现基于聚类的层次结构相对于两级层次结构提高了预测精度。其次,我们设计了一种基于层次结构随机排列的方法,在时间序列随机分配给聚类的同时保持层次结构的固定。在这样做的过程中,我们发现使用聚类所获得的预测精度的提高不是来自对相似序列的分组,而是来自层次结构。第三,我们提出了一种基于使用不同聚类方法构建的跨层次平均预测的方法,该方法被证明优于任何单一聚类方法。所有分析都是在两个基准数据集和一个模拟数据集上进行的。我们的研究结果为层次结构在预测调节中的作用提供了新的见解,并为预测实践提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing hierarchical time series through clustering: Is there an optimal way for forecasting?
Forecast reconciliation has attracted significant research interest in recent years, with most studies taking the hierarchy of time series as given. We extend existing work that uses time series clustering to construct hierarchies to improve forecast accuracy in three ways. First, we investigate multiple approaches to clustering, including different clustering algorithms, how time series are represented, and how the distance between time series is defined. We find that cluster-based hierarchies improve forecast accuracy relative to two-level hierarchies. Second, we devise an approach based on random permutation of hierarchies, keeping the hierarchy structure fixed while time series are randomly allocated to clusters. In doing so, we find that improvements in forecast accuracy that accrue from using clustering do not arise from grouping similar series but from the structure of the hierarchy. Third, we propose an approach based on averaging forecasts across hierarchies constructed using different clustering methods that is shown to outperform any single clustering method. All analysis is carried out on two benchmark datasets and a simulated dataset. Our findings provide new insights into the role of hierarchy construction in forecast reconciliation and offer valuable guidance on forecasting practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信