International Journal of Forecasting最新文献

筛选
英文 中文
Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues 跨时概率预测协调:方法和实践问题
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2023-11-07 DOI: 10.1016/j.ijforecast.2023.10.003
Daniele Girolimetto , George Athanasopoulos , Tommaso Di Fonzo , Rob J. Hyndman
{"title":"Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues","authors":"Daniele Girolimetto ,&nbsp;George Athanasopoulos ,&nbsp;Tommaso Di Fonzo ,&nbsp;Rob J. Hyndman","doi":"10.1016/j.ijforecast.2023.10.003","DOIUrl":"10.1016/j.ijforecast.2023.10.003","url":null,"abstract":"<div><p>Forecast reconciliation is a post-forecasting process that involves transforming a set of incoherent forecasts into coherent forecasts which satisfy a given set of linear constraints for a multivariate time series. In this paper, we extend the current state-of-the-art cross-sectional probabilistic forecast reconciliation approach to encompass a cross-temporal framework, where temporal constraints are also applied. Our proposed methodology employs both parametric Gaussian and non-parametric bootstrap approaches to draw samples from an incoherent cross-temporal distribution. To improve the estimation of the forecast error covariance matrix, we propose using multi-step residuals, especially in the time dimension where the usual one-step residuals fail. To address high-dimensionality issues, we present four alternatives for the covariance matrix, where we exploit the two-fold nature (cross-sectional and temporal) of the cross-temporal structure, and introduce the idea of overlapping residuals. We assess the effectiveness of the proposed cross-temporal reconciliation approaches through a simulation study that investigates their theoretical and empirical properties and two forecasting experiments, using the Australian GDP and the Australian Tourism Demand datasets. For both applications, the optimal cross-temporal reconciliation approaches significantly outperform the incoherent base forecasts in terms of the continuous ranked probability score and the energy score. Overall, the results highlight the potential of the proposed methods to improve the accuracy of probabilistic forecasts and to address the challenge of integrating disparate scenarios while coherently taking into account short-term operational, medium-term tactical, and long-term strategic planning.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1134-1151"},"PeriodicalIF":7.9,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001024/pdfft?md5=b9978f6e8d4d5d5d9fff37d9d9c92f92&pid=1-s2.0-S0169207023001024-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135509503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating probabilistic classifiers: The triptych 评估概率分类器:三部曲
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2023-11-04 DOI: 10.1016/j.ijforecast.2023.09.007
Timo Dimitriadis , Tilmann Gneiting , Alexander I. Jordan , Peter Vogel
{"title":"Evaluating probabilistic classifiers: The triptych","authors":"Timo Dimitriadis ,&nbsp;Tilmann Gneiting ,&nbsp;Alexander I. Jordan ,&nbsp;Peter Vogel","doi":"10.1016/j.ijforecast.2023.09.007","DOIUrl":"10.1016/j.ijforecast.2023.09.007","url":null,"abstract":"<div><p>Probability forecasts for binary outcomes, often referred to as probabilistic classifiers or confidence scores, are ubiquitous in science and society, and methods for evaluating and comparing them are in great demand. We propose and study a triptych of diagnostic graphics focusing on distinct and complementary aspects of forecast performance: Reliability curves address calibration, receiver operating characteristic (ROC) curves diagnose discrimination ability, and Murphy curves visualize overall predictive performance and value. A Murphy curve shows a forecast’s mean elementary scores, including the widely used misclassification rate, and the area under a Murphy curve equals the mean Brier score. For a calibrated forecast, the reliability curve lies on the diagonal, and for competing calibrated forecasts, the ROC and Murphy curves share the same number of crossing points. We invoke the recently developed CORP (Consistent, Optimally binned, Reproducible, and Pool-Adjacent-Violators (PAV) algorithm-based) approach to craft reliability curves and decompose a mean score into miscalibration (MCB), discrimination (DSC), and uncertainty (UNC) components. Plots of the <span><math><mtext>DSC</mtext></math></span> measure of discrimination ability versus the calibration metric <span><math><mtext>MCB</mtext></math></span> visualize classifier performance across multiple competitors. The proposed tools are illustrated in empirical examples from astrophysics, economics, and social science.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1101-1122"},"PeriodicalIF":7.9,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023000997/pdfft?md5=bd26faa9dd0165399770a39be8802f6a&pid=1-s2.0-S0169207023000997-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135455588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short-term stock price trend prediction with imaging high frequency limit order book data 利用成像高频限价订单簿数据预测短期股价趋势
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2023-11-03 DOI: 10.1016/j.ijforecast.2023.10.008
Wuyi Ye, Jinting Yang, Pengzhan Chen
{"title":"Short-term stock price trend prediction with imaging high frequency limit order book data","authors":"Wuyi Ye,&nbsp;Jinting Yang,&nbsp;Pengzhan Chen","doi":"10.1016/j.ijforecast.2023.10.008","DOIUrl":"10.1016/j.ijforecast.2023.10.008","url":null,"abstract":"<div><p>Predicting price movements over a short period is a challenging problem in high-frequency trading. Deep learning methods have recently been used to forecast short-term prices via limit order book (LOB) data. In this paper, we propose a framework to convert LOB data into a series of standard images in 2D matrices and predict the mid-price movements via an image-based convolutional neural network (CNN). The empirical study shows that the image-based CNN model outperforms other traditional machine learning and deep learning methods based on raw LOB data. Our findings suggest that the additional information implicit in LOB images contributes to short-term price forecasting.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1189-1205"},"PeriodicalIF":7.9,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135410354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DeepTVAR: Deep learning for a time-varying VAR model with extension to integrated VAR DeepTVAR:时变 VAR 模型的深度学习,扩展至综合 VAR
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2023-10-30 DOI: 10.1016/j.ijforecast.2023.10.001
Xixi Li, Jingsong Yuan
{"title":"DeepTVAR: Deep learning for a time-varying VAR model with extension to integrated VAR","authors":"Xixi Li,&nbsp;Jingsong Yuan","doi":"10.1016/j.ijforecast.2023.10.001","DOIUrl":"10.1016/j.ijforecast.2023.10.001","url":null,"abstract":"<div><p>This paper proposes a new approach called DeepTVAR that employs a deep learning methodology for vector autoregressive (VAR) modeling and prediction with time-varying parameters. By optimizing the VAR parameters with a long short-term memory (LSTM) network, we retain the Markovian dependence for prediction purposes and make full use of the recurrent structure and powerful learning ability of the LSTM. To ensure the stability of the model, we enforce the causality condition on the autoregressive coefficients using the Ansley–Kohn transform. We provide a simulation study of the estimation ability using realistic curves generated from data. The model is extended to integrated VAR with time-varying parameters, and we compare its forecasting performance with existing methods when applied to energy price data.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1123-1133"},"PeriodicalIF":7.9,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001000/pdfft?md5=bc81dadfc6183648fd77733111eafc20&pid=1-s2.0-S0169207023001000-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136153899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obituary: Everette S Gardner Jr 讣告:小埃弗雷特·S·加德纳
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2023-10-28 DOI: 10.1016/j.ijforecast.2023.10.006
Robert Fildes, Rob J Hyndman
{"title":"Obituary: Everette S Gardner Jr","authors":"Robert Fildes,&nbsp;Rob J Hyndman","doi":"10.1016/j.ijforecast.2023.10.006","DOIUrl":"10.1016/j.ijforecast.2023.10.006","url":null,"abstract":"","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 1","pages":"Pages 4-5"},"PeriodicalIF":7.9,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016920702300105X/pdfft?md5=6cf9204f58987462e07cf9ac0d470b0e&pid=1-s2.0-S016920702300105X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136127791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Out-of-sample predictability in predictive regressions with many predictor candidates 有许多候选预测因子的预测性回归中的样本外可预测性
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2023-10-28 DOI: 10.1016/j.ijforecast.2023.10.005
Jesús Gonzalo , Jean-Yves Pitarakis
{"title":"Out-of-sample predictability in predictive regressions with many predictor candidates","authors":"Jesús Gonzalo ,&nbsp;Jean-Yves Pitarakis","doi":"10.1016/j.ijforecast.2023.10.005","DOIUrl":"10.1016/j.ijforecast.2023.10.005","url":null,"abstract":"<div><p>This paper is concerned with detecting the presence of out-of-sample predictability in linear predictive regressions with a potentially large set of candidate predictors. We propose a procedure based on out-of-sample MSE comparisons that is implemented in a pairwise manner using one predictor at a time. This results in an aggregate test statistic that is standard normally distributed under the global null hypothesis of no linear predictability. Predictors can be highly persistent, purely stationary, or a combination of both. Upon rejecting the null hypothesis, we introduce a predictor screening procedure designed to identify the most active predictors. An empirical application to key predictors of US economic activity illustrates the usefulness of our methods. It highlights the important forward-looking role played by the series of manufacturing new orders.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1166-1178"},"PeriodicalIF":7.9,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001048/pdfft?md5=80ff4bc94530f3c1aff904ea06341ce6&pid=1-s2.0-S0169207023001048-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136119733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving models and forecasts after equilibrium-mean shifts 平衡均值变化后模型和预测的改进
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2023-10-19 DOI: 10.1016/j.ijforecast.2023.09.006
Jennifer L. Castle , Jurgen A. Doornik , David F. Hendry
{"title":"Improving models and forecasts after equilibrium-mean shifts","authors":"Jennifer L. Castle ,&nbsp;Jurgen A. Doornik ,&nbsp;David F. Hendry","doi":"10.1016/j.ijforecast.2023.09.006","DOIUrl":"10.1016/j.ijforecast.2023.09.006","url":null,"abstract":"<div><p>Equilibrium-mean shifts can result from changes in intercepts with constant dynamics, or be induced by shifts in dynamics with non-zero data means, or both. Induced shifts distort parameter estimates and create a discrepancy between the forecast origin and the equilibrium mean, leading to forecast failure and requiring modifications to previous forecast-error taxonomies. Step-indicator saturation can detect induced shifts, but that does not correct forecast failure. To discriminate direct from induced equilibrium-mean shifts, we augment the model by multiplicative indicators where all selected step indicators interact with the lagged regressand. Forecasts can be markedly improved after induced shifts by including these interactive indicators.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1085-1100"},"PeriodicalIF":7.9,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023000985/pdfft?md5=b5c8b46641e835f9af3feb49dfa1d5b3&pid=1-s2.0-S0169207023000985-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136118139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A theory-based method to evaluate the impact of central bank inflation forecasts on private inflation expectations 评估中央银行通胀预测对私人通胀预期影响的理论方法
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2023-10-12 DOI: 10.1016/j.ijforecast.2023.09.005
Luciano Vereda , João Savignon , Tarciso Gouveia da Silva
{"title":"A theory-based method to evaluate the impact of central bank inflation forecasts on private inflation expectations","authors":"Luciano Vereda ,&nbsp;João Savignon ,&nbsp;Tarciso Gouveia da Silva","doi":"10.1016/j.ijforecast.2023.09.005","DOIUrl":"10.1016/j.ijforecast.2023.09.005","url":null,"abstract":"<div><p><span><span>We propose a theory-based method to assess the impact of central banks’ inflation forecasts on private </span>inflation expectations. We use regressions derived from a leader-follower model with noisy information and public signals. The leader is the Central Bank (CB), which solves a signal extraction problem to estimate the rational expectation of inflation. Private agents then act by solving an analogous problem to estimate this same value by using their own information and the forecasts disclosed by the CB. The method allows for estimating the structural parameters that characterize noisy information models, which are hard to estimate using purely </span>econometric tools. It also sheds light on the issue of the alleged CB’s superiority in predicting inflation behavior.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1069-1084"},"PeriodicalIF":7.9,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135706061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecasting euro area inflation using a huge panel of survey expectations 利用庞大的调查预期面板预测欧元区通胀率
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2023-10-09 DOI: 10.1016/j.ijforecast.2023.09.003
Florian Huber , Luca Onorante , Michael Pfarrhofer
{"title":"Forecasting euro area inflation using a huge panel of survey expectations","authors":"Florian Huber ,&nbsp;Luca Onorante ,&nbsp;Michael Pfarrhofer","doi":"10.1016/j.ijforecast.2023.09.003","DOIUrl":"10.1016/j.ijforecast.2023.09.003","url":null,"abstract":"<div><p>In this paper, we forecast euro area inflation and its main components using a massive number of time series on survey expectations obtained from the European Commission’s Business and Consumer Survey. To make the estimation of such a huge model tractable, we use recent advances in computational statistics to carry out posterior simulation and inference. Our findings suggest that including a wide range of firms’ and consumers’ opinions about future economic developments offers useful information to forecast prices and assess tail risks to inflation. These predictive improvements arise from surveys related to expected inflation and other questions related to the general economic environment. Finally, we find that firms’ expectations about the future seem to have more predictive content than consumer expectations.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1042-1054"},"PeriodicalIF":7.9,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016920702300095X/pdfft?md5=f19e1ad69aaed5d77ad8b676ed1d5090&pid=1-s2.0-S016920702300095X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135607152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demand forecasting under lost sales stock policies 损失销售库存政策下的需求预测
IF 7.9 2区 经济学
International Journal of Forecasting Pub Date : 2023-10-08 DOI: 10.1016/j.ijforecast.2023.09.004
Juan R. Trapero, Enrique Holgado de Frutos, Diego J. Pedregal
{"title":"Demand forecasting under lost sales stock policies","authors":"Juan R. Trapero,&nbsp;Enrique Holgado de Frutos,&nbsp;Diego J. Pedregal","doi":"10.1016/j.ijforecast.2023.09.004","DOIUrl":"10.1016/j.ijforecast.2023.09.004","url":null,"abstract":"<div><p>Demand forecasting is a crucial task within supply chain management. Stock control policies are directly affected by the precision of probabilistic demand forecasts. For instance, safety stocks and reorder points are based on those forecasts. However, forecasting and replenishment policies have typically been studied separately. In this work, we explore the influence of inventory assumptions on the selection of the forecasting model<span>. In particular, we consider when the stock policy follows a lost sales context and the demand is estimated by means of sales data. In that case, forecasting models should use censored demand estimations. Unfortunately, the literature about censored demand forecasting remains very limited, without an accepted general solution for this problem. In this work, we bridge that gap by proposing the Tobit Kalman filter (TKF). To the best of our knowledge, this is the first time that the TKF has been applied to supply chain demand forecasting, and this approach may represent a general solution for lost sales contexts. The TKF is compared with a previous ad hoc censored demand forecasting solution that is based on single exponential smoothing. In addition, we show the performance of the TKF when dealing with trends where ad hoc approaches are not available for use as benchmarks. To express the potential benefits of the proposed approach in terms of costs and the service level, a newsvendor stock policy is employed. Simulated demand data and a case study are used to illustrate the significant advantages of the proposed tool.</span></p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1055-1068"},"PeriodicalIF":7.9,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135606286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信