{"title":"Investigating laypeople’s short- and long-term forecasts of COVID-19 infection cycles","authors":"Moon Su Koo , Yun Shin Lee , Matthias Seifert","doi":"10.1016/j.ijforecast.2023.11.008","DOIUrl":"10.1016/j.ijforecast.2023.11.008","url":null,"abstract":"<div><div>How do laypeople anticipate the severity of the COVID-19 pandemic in the short and long term? The evolution of COVID-19 infection cases is characterized by wave-shaped cycles, and we examine how individuals make forecasts for this type of time series<span><span>. Over 42 weeks, we ran forecasting experiments and elicited weekly judgments from the general public to analyze their forecasting behavior<span> (Study 1). We find that laypeople often tend to dampen trends when generating judgmental forecasts, but the degree to which this happens depends on the evolution of the cyclic time series data. The observed forecasting behavior reveals evidence of an </span></span>optimism bias in that people do not expect the number of infection cases to grow at the observed rate while believing that infection rates would drop at an even faster rate than they are. Also, our results suggest that laypeople’s forecasting judgments are affected by the magnitude of the present wave relative to the previously observed ones. Further, we provide evidence that laypeople rely on a cognitive heuristic for generating long-term forecasts. People tend to rely on a linear discounting rule in that they lower their long-term forecasts proportionally to the interval of the forecast horizon, i.e., from tomorrow to 6 months and from 6 months to 1 year. We also find that this linear discounting rule can change to an exponential one in reaction to externally generated optimistic information signals such as vaccine approval. Furthermore, we replicated the major findings of Study 1 in a more controlled setting with a hypothetical pandemic scenario and artificially generated time series (Study 2). Overall, the current research contributes to the judgmental forecasting literature and provides practical implications for decision-makers in the pandemic.</span></div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 2","pages":"Pages 452-465"},"PeriodicalIF":6.9,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138682565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nowcasting with panels and alternative data: The OECD weekly tracker","authors":"","doi":"10.1016/j.ijforecast.2023.11.005","DOIUrl":"10.1016/j.ijforecast.2023.11.005","url":null,"abstract":"<div><p>Alternative data are timely but messy. They can provide policymakers with real-time information, but their use is constrained by the complexity of their relationship with official statistics<span><span>. Data from credit card transactions, search engines, or traffic have been made available since only recently, which makes it more difficult to precisely gauge their relationship with national accounts. This paper aims at solving this problem by compensating their short history with their large country coverage. It introduces a heterogeneous panel model approach where a </span>neural network learns the relationship between Google Trends data and GDP growth from data pooled from 46 countries. The resulting “OECD Weekly Tracker” yields real-time estimates of weekly GDP, which are proven to be accurate using forecast simulations. It is a valuable compass for policymaking in turbulent waters.</span></p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1302-1335"},"PeriodicalIF":6.9,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138682480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Do professional forecasters believe in the Phillips curve?","authors":"Michael P. Clements","doi":"10.1016/j.ijforecast.2023.11.004","DOIUrl":"10.1016/j.ijforecast.2023.11.004","url":null,"abstract":"<div><p>The expectations-augmented Phillips curve (PC) is a cornerstone of many macroeconomic models. We consider the extent to which professional forecasters’ inflation and unemployment rate forecasts are ‘theory consistent’, and find much heterogeneity. Perceptions about the responsiveness of inflation to the unemployment rate are shown to depend on whether the respondent was active earlier or later during the period 1981–2019, and on whether the respondent happened to forecast at times of tight labour markets.</p><p>Theory consistency is related to more accurate forecasts at the shortest horizon but not significantly so at longer horizons. At longer horizons PC-model heterogeneity accounts for the lion’s share of the observed disagreement in reported inflation forecasts.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1238-1254"},"PeriodicalIF":7.9,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001140/pdfft?md5=06a0e455a8ea1d767ee38797b3cc93ab&pid=1-s2.0-S0169207023001140-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138563047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Ballarin , Petros Dellaportas , Lyudmila Grigoryeva , Marcel Hirt , Sophie van Huellen , Juan-Pablo Ortega
{"title":"Reservoir computing for macroeconomic forecasting with mixed-frequency data","authors":"Giovanni Ballarin , Petros Dellaportas , Lyudmila Grigoryeva , Marcel Hirt , Sophie van Huellen , Juan-Pablo Ortega","doi":"10.1016/j.ijforecast.2023.10.009","DOIUrl":"10.1016/j.ijforecast.2023.10.009","url":null,"abstract":"<div><p>Macroeconomic forecasting has recently started embracing techniques that can deal with large-scale datasets and series with unequal release periods. Mixed-data sampling (MIDAS) and dynamic factor models (DFMs) are the two main state-of-the-art approaches to modeling series with non-homogeneous frequencies. We introduce a new framework, called the multi-frequency echo state network (MFESN), based on a relatively novel machine learning paradigm called reservoir computing. Echo state networks (ESNs) are recurrent neural networks formulated as nonlinear state-space systems with random state coefficients where only the observation map is subject to estimation. MFESNs are considerably more efficient than DFMs and can incorporate many series, as opposed to MIDAS models, which are prone to the curse of dimensionality. All methods are compared in extensive multistep forecasting exercises targeting U.S. GDP growth. We find that our MFESN models achieve superior or comparable performance over MIDAS and DFMs at a much lower computational cost.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1206-1237"},"PeriodicalIF":7.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001085/pdfft?md5=02cc0203937b906c9719e0df65a0dafe&pid=1-s2.0-S0169207023001085-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138545466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Forecasting day-ahead electricity prices with spatial dependence","authors":"Yifan Yang , Ju’e Guo , Yi Li , Jiandong Zhou","doi":"10.1016/j.ijforecast.2023.11.006","DOIUrl":"10.1016/j.ijforecast.2023.11.006","url":null,"abstract":"<div><p>Market integration connects multiple autarkic electricity markets and facilitates the flow of power across areas. More often than not, market integration can increase social welfare for the whole power system with a clear spatial dependence structure among area electricity prices, which motivates a new perspective on electricity price forecasting<span>. In this paper, we construct a model to forecast the day-ahead electricity prices of Nord Pool with spatial dependence. First of all, we convert the electricity prices into graph data. Then, we propose an STGNN (Spatial-Temporal Graph Neural Network) model to exploit spatial and temporal features. In particular, the STGNN model can accurately forecast electricity prices for multiple areas, where the adjacency matrix representing the spatial dependence structure is pre-captured by the R-vine (regular vine) copula. Our results show that the spatial dependence structure described by the R-vine copula can perfectly reflect the physical characteristics of the electricity system; moreover, the forecasting performance of the proposed STGNN model is significantly better than the existing models in terms of overall accuracy and hourly accuracy within a day.</span></p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1255-1270"},"PeriodicalIF":7.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nowcasting U.S. state-level CO2 emissions and energy consumption","authors":"Jack Fosten , Shaoni Nandi","doi":"10.1016/j.ijforecast.2023.10.002","DOIUrl":"10.1016/j.ijforecast.2023.10.002","url":null,"abstract":"<div><div>This paper proposes panel nowcasting methods to obtain timely predictions of CO<sub>2</sub> emissions and energy consumption growth across all U.S. states. This is crucial, not least because of the increasing role of sub-national carbon abatement policies but also due to the very delayed publication of the data. Since the state-level CO<sub>2</sub> data are constructed from energy consumption data, we propose a new panel bridge equation method. We use a mixed frequency set-up where economic data are first used to predict energy consumption growth. This is then used to predict CO<sub>2</sub> emissions growth while allowing for cross-sectional dependence across states using estimated factors. We evaluate the models’ performance using an out-of-sample forecasting study. We find that nowcasts improve when incorporating timely data like electricity consumption relative to a simple benchmark. These gains are sizeable in many states, even around two years before the data are eventually released. In predicting CO<sub>2</sub> emissions growth, nowcast accuracy gains are also notable well before the data release, especially after the current year’s energy consumption data are used in making the prediction.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 20-30"},"PeriodicalIF":6.9,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rating players by Laplace’s approximation and dynamic modeling","authors":"Hsuan-Fu Hua, Ching-Ju Chang, Tse-Ching Lin, Ruby Chiu-Hsing Weng","doi":"10.1016/j.ijforecast.2023.10.004","DOIUrl":"10.1016/j.ijforecast.2023.10.004","url":null,"abstract":"<div><p>The Elo rating system is a simple and widely used method for calculating players’ skills from paired comparison data. Many have extended it in various ways. Yet the question of updating players’ variances remains to be further explored. In this paper, we address the issue of variance update by using the Laplace approximation for posterior distributions, together with a random walk model for the dynamics of players’ strengths and a lower bound on player variance. The random walk model is motivated by the Glicko system, but here we assume nonidentically distributed increments to deal with player heterogeneity. Experiments on men’s professional matches showed that the prediction accuracy slightly improves when the variance update is performed. They also showed that new players’ strengths may be better captured with the variance update.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1152-1165"},"PeriodicalIF":7.9,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135614914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Portfolio selection under non-gaussianity and systemic risk: A machine learning based forecasting approach","authors":"Weidong Lin , Abderrahim Taamouti","doi":"10.1016/j.ijforecast.2023.10.007","DOIUrl":"10.1016/j.ijforecast.2023.10.007","url":null,"abstract":"<div><p><span>The Sharpe-ratio-maximizing portfolio becomes questionable under non-Gaussian returns, and it rules out, by construction, systemic risk, which can negatively affect its out-of-sample performance. In the present work, we develop a new performance ratio that simultaneously addresses these two problems when building optimal portfolios. To robustify the portfolio optimization and better represent extreme market scenarios, we simulate a large number of returns via a Monte Carlo method. This is done by obtaining probabilistic return forecasts through a distributional machine learning approach in a big data setting and then combining them with a fitted </span>copula to generate return scenarios. Based on a large-scale comparative analysis conducted on the US market, the backtesting results demonstrate the superiority of our proposed portfolio selection approach against several popular benchmark strategies in terms of both profitability and minimizing systemic risk. This outperformance is robust to the inclusion of transaction costs.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1179-1188"},"PeriodicalIF":7.9,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135615429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Obituary: J. Scott Armstrong","authors":"Fred Collopy, Robert Fildes","doi":"10.1016/j.ijforecast.2023.11.001","DOIUrl":"10.1016/j.ijforecast.2023.11.001","url":null,"abstract":"","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 1","pages":"Pages 1-3"},"PeriodicalIF":7.9,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001103/pdfft?md5=8ad9be59c8dbc64985e542ac6593e224&pid=1-s2.0-S0169207023001103-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}