{"title":"Dynamic prediction of the National Hockey League draft with rank-ordered logit models","authors":"","doi":"10.1016/j.ijforecast.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>The National Hockey League (NHL) Entry Draft has been an active area of research in hockey analytics over the past decade. Prior research has explored predictive modelling for draft results using player information and statistics as well as ranking data from draft experts. In this paper, we develop a new modelling framework for this problem using a Bayesian rank-ordered logit model based on draft ranking data from industry experts between 2019 and 2022. This model builds upon previous approaches by incorporating team tendencies, addressing within-ranking dependence between players, and solving various other challenges of working with rank-ordered outcomes, such as incorporating both unranked players and rankings that only consider a subset of the available pool of players (e.g., North American skaters, European goalies, etc.).</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000086","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The National Hockey League (NHL) Entry Draft has been an active area of research in hockey analytics over the past decade. Prior research has explored predictive modelling for draft results using player information and statistics as well as ranking data from draft experts. In this paper, we develop a new modelling framework for this problem using a Bayesian rank-ordered logit model based on draft ranking data from industry experts between 2019 and 2022. This model builds upon previous approaches by incorporating team tendencies, addressing within-ranking dependence between players, and solving various other challenges of working with rank-ordered outcomes, such as incorporating both unranked players and rankings that only consider a subset of the available pool of players (e.g., North American skaters, European goalies, etc.).
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.