{"title":"Network log-ARCH models for forecasting stock market volatility","authors":"","doi":"10.1016/j.ijforecast.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a dynamic network autoregressive conditional heteroscedasticity (ARCH) model suitable for high-dimensional cases where multivariate ARCH models are typically no longer applicable. We adopt the theoretical foundations from spatiotemporal statistics and transfer the dynamic ARCH model processes to networks. The model integrates temporally lagged volatility and information from adjacent nodes, which may instantaneously spill across the entire network. The model is used to forecast volatility in the US stock market, and the edges are determined based on various distance and correlation measures between the time series. The performance of alternative network definitions is compared with independent univariate log-ARCH models in terms of out-of-sample prediction accuracy. The results indicate that more accurate forecasts are obtained with network-based models and that accuracy can be improved by combining the forecasts of different network definitions. We emphasise the significance for practitioners to integrate network structure information when developing volatility forecasts.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1539-1555"},"PeriodicalIF":6.9000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207024000025/pdfft?md5=784080169573790027c8d4ca4cbd201c&pid=1-s2.0-S0169207024000025-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000025","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a dynamic network autoregressive conditional heteroscedasticity (ARCH) model suitable for high-dimensional cases where multivariate ARCH models are typically no longer applicable. We adopt the theoretical foundations from spatiotemporal statistics and transfer the dynamic ARCH model processes to networks. The model integrates temporally lagged volatility and information from adjacent nodes, which may instantaneously spill across the entire network. The model is used to forecast volatility in the US stock market, and the edges are determined based on various distance and correlation measures between the time series. The performance of alternative network definitions is compared with independent univariate log-ARCH models in terms of out-of-sample prediction accuracy. The results indicate that more accurate forecasts are obtained with network-based models and that accuracy can be improved by combining the forecasts of different network definitions. We emphasise the significance for practitioners to integrate network structure information when developing volatility forecasts.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.