高斯预测和计数预测的协调分布特性

IF 6.9 2区 经济学 Q1 ECONOMICS
{"title":"高斯预测和计数预测的协调分布特性","authors":"","doi":"10.1016/j.ijforecast.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>Reconciliation enforces coherence between hierarchical forecasts, in order to satisfy a set of linear constraints. While most works focus on the reconciliation of point forecasts, we consider probabilistic reconciliation and we analyze the properties of distributions reconciled via conditioning. We provide a formal analysis of the variance of the reconciled distribution, treating the case of Gaussian and count forecasts separately. We also study the reconciled upper mean in the case of one-level hierarchies, again treating Gaussian and count forecasts separately. We then show experiments on the reconciliation of intermittent time series related to the count of extreme market events. The experiments confirm our theoretical results and show that reconciliation largely improves the performance of probabilistic forecasting.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1438-1448"},"PeriodicalIF":6.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016920702300136X/pdfft?md5=9e8e80067e02ac1e611fc1ae1e5aec76&pid=1-s2.0-S016920702300136X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Properties of the reconciled distributions for Gaussian and count forecasts\",\"authors\":\"\",\"doi\":\"10.1016/j.ijforecast.2023.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reconciliation enforces coherence between hierarchical forecasts, in order to satisfy a set of linear constraints. While most works focus on the reconciliation of point forecasts, we consider probabilistic reconciliation and we analyze the properties of distributions reconciled via conditioning. We provide a formal analysis of the variance of the reconciled distribution, treating the case of Gaussian and count forecasts separately. We also study the reconciled upper mean in the case of one-level hierarchies, again treating Gaussian and count forecasts separately. We then show experiments on the reconciliation of intermittent time series related to the count of extreme market events. The experiments confirm our theoretical results and show that reconciliation largely improves the performance of probabilistic forecasting.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"40 4\",\"pages\":\"Pages 1438-1448\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016920702300136X/pdfft?md5=9e8e80067e02ac1e611fc1ae1e5aec76&pid=1-s2.0-S016920702300136X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016920702300136X\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016920702300136X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

调和强制分层预测之间的一致性,以满足一组线性约束条件。大多数研究侧重于点预测的协调,而我们考虑的是概率协调,并分析了通过条件协调的分布的特性。我们对调和分布的方差进行了正式分析,分别处理了高斯预测和计数预测的情况。我们还研究了单级分层情况下的调和上均值,同样分别处理了高斯预测和计数预测。然后,我们展示了与极端市场事件计数相关的间歇时间序列的调节实验。实验证实了我们的理论结果,并表明调和在很大程度上提高了概率预测的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of the reconciled distributions for Gaussian and count forecasts

Reconciliation enforces coherence between hierarchical forecasts, in order to satisfy a set of linear constraints. While most works focus on the reconciliation of point forecasts, we consider probabilistic reconciliation and we analyze the properties of distributions reconciled via conditioning. We provide a formal analysis of the variance of the reconciled distribution, treating the case of Gaussian and count forecasts separately. We also study the reconciled upper mean in the case of one-level hierarchies, again treating Gaussian and count forecasts separately. We then show experiments on the reconciliation of intermittent time series related to the count of extreme market events. The experiments confirm our theoretical results and show that reconciliation largely improves the performance of probabilistic forecasting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信