{"title":"Robust recalibration of aggregate probability forecasts using meta-beliefs","authors":"Cem Peker , Tom Wilkening","doi":"10.1016/j.ijforecast.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>Previous work suggests that aggregate probabilistic forecasts on a binary event are often conservative. Extremizing transformations that adjust the aggregate forecast away from the uninformed prior of 0.5 can improve calibration in many settings. However, such transformations may be problematic in decision problems where forecasters share a biased prior. In these problems, extremizing transformations can introduce further miscalibration. We develop a two-step algorithm where we first estimate the prior using each forecaster’s belief about the average forecast of others. We then transform away from this estimated prior in each forecasting problem. Our algorithm works in single-question forecasting problems and does not require past data. Evidence from experimental prediction tasks suggests that the resulting average probability forecast is robust to biased priors and improves calibration.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 2","pages":"Pages 613-630"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000992","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Previous work suggests that aggregate probabilistic forecasts on a binary event are often conservative. Extremizing transformations that adjust the aggregate forecast away from the uninformed prior of 0.5 can improve calibration in many settings. However, such transformations may be problematic in decision problems where forecasters share a biased prior. In these problems, extremizing transformations can introduce further miscalibration. We develop a two-step algorithm where we first estimate the prior using each forecaster’s belief about the average forecast of others. We then transform away from this estimated prior in each forecasting problem. Our algorithm works in single-question forecasting problems and does not require past data. Evidence from experimental prediction tasks suggests that the resulting average probability forecast is robust to biased priors and improves calibration.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.