Robust recalibration of aggregate probability forecasts using meta-beliefs

IF 6.9 2区 经济学 Q1 ECONOMICS
Cem Peker , Tom Wilkening
{"title":"Robust recalibration of aggregate probability forecasts using meta-beliefs","authors":"Cem Peker ,&nbsp;Tom Wilkening","doi":"10.1016/j.ijforecast.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>Previous work suggests that aggregate probabilistic forecasts on a binary event are often conservative. Extremizing transformations that adjust the aggregate forecast away from the uninformed prior of 0.5 can improve calibration in many settings. However, such transformations may be problematic in decision problems where forecasters share a biased prior. In these problems, extremizing transformations can introduce further miscalibration. We develop a two-step algorithm where we first estimate the prior using each forecaster’s belief about the average forecast of others. We then transform away from this estimated prior in each forecasting problem. Our algorithm works in single-question forecasting problems and does not require past data. Evidence from experimental prediction tasks suggests that the resulting average probability forecast is robust to biased priors and improves calibration.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 2","pages":"Pages 613-630"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000992","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Previous work suggests that aggregate probabilistic forecasts on a binary event are often conservative. Extremizing transformations that adjust the aggregate forecast away from the uninformed prior of 0.5 can improve calibration in many settings. However, such transformations may be problematic in decision problems where forecasters share a biased prior. In these problems, extremizing transformations can introduce further miscalibration. We develop a two-step algorithm where we first estimate the prior using each forecaster’s belief about the average forecast of others. We then transform away from this estimated prior in each forecasting problem. Our algorithm works in single-question forecasting problems and does not require past data. Evidence from experimental prediction tasks suggests that the resulting average probability forecast is robust to biased priors and improves calibration.
利用元信念对总概率预测进行稳健的再校准
先前的研究表明,对二元事件的总体概率预测通常是保守的。在许多情况下,极值转换可以使总体预测远离0.5的未知先验,从而改善校准。然而,在预测者共享有偏见的先验的决策问题中,这种转换可能是有问题的。在这些问题中,极值变换会导致进一步的误标定。我们开发了一个两步算法,我们首先使用每个预测者对其他人平均预测的信念来估计先验。然后,我们在每个预测问题中都从这个估计先验中转换出来。我们的算法适用于单问题预测问题,不需要过去的数据。来自实验预测任务的证据表明,所得的平均概率预测对有偏先验具有鲁棒性,并改进了校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信