{"title":"An overview of the effects of algorithm use on judgmental biases affecting forecasting","authors":"Alvaro Chacon , Esther Kaufmann","doi":"10.1016/j.ijforecast.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>In the realm of forecasting, judgmental biases often hinder efficiency and accuracy. Algorithms present a promising avenue for decision makers to enhance their forecasting performance. In this overview, we scrutinized the occurrence of the most relevant judgmental biases affecting forecasting across 162 papers, drawing from four recent reviews and papers published in forecasting journals, specifically focusing on the use of algorithms. Thirty-three of the 162 papers (20.4%) at least briefly mentioned one of twelve judgmental biases affecting forecasting. Our comprehensive analysis suggests that algorithms can potentially mitigate the adverse impacts of biases inherent in human judgment related to forecasting. Furthermore, these algorithms can leverage biases as an advantage, enhancing forecast accuracy. Intriguing revelations have surfaced, focusing mainly on four biases. By providing timely, relevant, well-performing, and consistent algorithmic advice, people can be effectively influenced to improve their forecasts, considering anchoring, availability, inconsistency, and confirmation bias. The findings highlight the gaps in the current research landscape and provide recommendations for practitioners. They also lay the groundwork for future studies on utilizing algorithms (e.g., large language models) and overcoming judgmental biases to improve forecasting performance.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 2","pages":"Pages 424-439"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024001018","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of forecasting, judgmental biases often hinder efficiency and accuracy. Algorithms present a promising avenue for decision makers to enhance their forecasting performance. In this overview, we scrutinized the occurrence of the most relevant judgmental biases affecting forecasting across 162 papers, drawing from four recent reviews and papers published in forecasting journals, specifically focusing on the use of algorithms. Thirty-three of the 162 papers (20.4%) at least briefly mentioned one of twelve judgmental biases affecting forecasting. Our comprehensive analysis suggests that algorithms can potentially mitigate the adverse impacts of biases inherent in human judgment related to forecasting. Furthermore, these algorithms can leverage biases as an advantage, enhancing forecast accuracy. Intriguing revelations have surfaced, focusing mainly on four biases. By providing timely, relevant, well-performing, and consistent algorithmic advice, people can be effectively influenced to improve their forecasts, considering anchoring, availability, inconsistency, and confirmation bias. The findings highlight the gaps in the current research landscape and provide recommendations for practitioners. They also lay the groundwork for future studies on utilizing algorithms (e.g., large language models) and overcoming judgmental biases to improve forecasting performance.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.