IEEE Transactions on Haptics最新文献

筛选
英文 中文
3D-Printed Models for Optimizing Tactile Braille & Shape Display. 优化触觉盲文和形状显示的 3D 打印模型。
IF 2.4 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-07-25 DOI: 10.1109/TOH.2024.3433582
Maryam Etezad, Rajeev Joshi, Robert Alexander, Franceli L Cibrian
{"title":"3D-Printed Models for Optimizing Tactile Braille & Shape Display.","authors":"Maryam Etezad, Rajeev Joshi, Robert Alexander, Franceli L Cibrian","doi":"10.1109/TOH.2024.3433582","DOIUrl":"https://doi.org/10.1109/TOH.2024.3433582","url":null,"abstract":"<p><p>Existing market-available refreshable Braille displays (RBDs) offer limited functionality at a high cost, hindering accessibility for individuals with blindness and visual impairment for teaching and learning purposes. This motivates us to develop a multi-functional, compact, and affordable RBD tailored for educational institutes to enhance teaching and learning experiences. We propose the development of BLISS (Braille Letters and Interactive Shape Screen), a novel RBD, that BLISS presents a unique configuration arrangement of Braille cells that accommodates up to six letters at a time and shapes by reusing the Braille pins. To determine the optimal specifications, including size, Braille cell spacing, and pin configuration, we fabricated and evaluated 3D-printed sets, mimicking how BLISS would display letters and shapes. We tested 36 variants of 3D-printed sets with 8 individuals with blindness and visual impairment and found that conventional Braille spacing is insufficient for accurately representing shapes. Hence, BLISS will introduce a novel design that uses a pin configuration to raise the extra pins to present shapes and lower them for Braille letters, providing dual-mode operation. Our findings show the potential of BLISS to display both Braille letters and shapes on the same refreshable display, offering a novel, compact, and cost-effective solution.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhance Kinesthetic Experience in Perceptual Learning for Welding Motor Skill Acquisition with Virtual Reality and Robot-based Haptic Guidance. 利用虚拟现实和基于机器人的触觉引导,在焊接运动技能学习的感知学习中增强运动体验。
IF 2.4 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-07-23 DOI: 10.1109/TOH.2024.3432835
Yang Ye, Pengxiang Xia, Fang Xu, Jing Du
{"title":"Enhance Kinesthetic Experience in Perceptual Learning for Welding Motor Skill Acquisition with Virtual Reality and Robot-based Haptic Guidance.","authors":"Yang Ye, Pengxiang Xia, Fang Xu, Jing Du","doi":"10.1109/TOH.2024.3432835","DOIUrl":"https://doi.org/10.1109/TOH.2024.3432835","url":null,"abstract":"<p><p>Welding is an important operation in many industries, including construction and manufacturing, which requires extensive training and practices. Although welding simulators have been used to accommodate welding training, it is still challenging to enable novice trainees to effectively understand the kinesthetic experience of the expert in an egocentric manner, such as the proper way of force exertion in complex welding operations. This study implements a robot-assisted perceptual learning system to transfer the expert welders' experience to trainees, including both the positional and force control actions. A human-subject experiment (N = 30) was performed to understand the motor skill acquisition process. Three conditions (control, robotic positional guidance with force visualization, and force perceptual learning with position visualization) were tested to evaluate the role of robotic guidance in welding motion control and force exertion. The results indicated various benefits related to task completion time and force control accuracy under the robotic guidance. The findings can inspire the design of future welding training systems enabled by external robotic systems.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-frequency Motor Cortex EEG Predicts Four Rates of Force Development. 低频运动皮层脑电图预测四种力量发展速度
IF 2.4 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-07-15 DOI: 10.1109/TOH.2024.3428308
Rory O'Keeffe, Seyed Yahya Shirazi, Alessandro Del Vecchio, Jaime Ibanez, Natalie Mrachacz-Kersting, Ramin Bighamian, John-Ross Rizzo, Dario Farina, S Farokh Atashzar
{"title":"Low-frequency Motor Cortex EEG Predicts Four Rates of Force Development.","authors":"Rory O'Keeffe, Seyed Yahya Shirazi, Alessandro Del Vecchio, Jaime Ibanez, Natalie Mrachacz-Kersting, Ramin Bighamian, John-Ross Rizzo, Dario Farina, S Farokh Atashzar","doi":"10.1109/TOH.2024.3428308","DOIUrl":"https://doi.org/10.1109/TOH.2024.3428308","url":null,"abstract":"<p><p>The movement-related cortical potential (MRCP) is a low-frequency component of the electroencephalography (EEG) signal that originates from the motor cortex and surrounding cortical regions. As the MRCP reflects both the intention and execution of motor control, it has the potential to serve as a communication interface between patients and neurorehabilitation robots. In this study, we investigated the EEG signal recorded centered at the Cz electrode with the aim of decoding four rates of force development (RFD) during isometric contractions of the tibialis anterior muscle. The four levels of RFD were defined with respect to the maximum voluntary contraction (MVC) of the muscle as follows: Slow (20% MVC/s), Medium (30% MVC/s), Fast (60% MVC/s), and Ballistic (120% MVC/s). Three feature sets were assessed for describing the EEG traces in the classification process. These included: (i) MRCP Morphological Characteristics in the δ-band, such as timing and amplitude; (ii) MRCP Statistical Characteristics in the δ-band, such as standard deviation, mean, and kurtosis; and (iii) Wideband Time-frequency Features in the 0.1-90 Hz range. The four levels of RFD were accurately classified using a support vector machine. When utilizing the Wideband Time-frequency Features, the accuracy was 83% ± 9% (mean ± SD). Meanwhile, when using the MRCP Statistical Characteristics, the accuracy was 78% ± 12% (mean ± SD). The analysis of the MRCP waveform revealed that it contains highly informative data on the planning, execution, completion, and duration of the isometric dorsiflexion task. The temporal analysis emphasized the importance of the δ-band in translating to motor command, and this has promising implications for the field of neural engineering systems.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal congruency modulates weighting of visuotactile information in displacement judgments. 时空一致性会调节位移判断中视觉触觉信息的权重。
IF 2.4 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-07-09 DOI: 10.1109/TOH.2024.3421953
Nedim Goktepe, Knut Drewing, Alexander C Schutz
{"title":"Spatiotemporal congruency modulates weighting of visuotactile information in displacement judgments.","authors":"Nedim Goktepe, Knut Drewing, Alexander C Schutz","doi":"10.1109/TOH.2024.3421953","DOIUrl":"10.1109/TOH.2024.3421953","url":null,"abstract":"<p><p>Combining or integrating information from multiple senses often provides richer and more reliable estimates for the perception of objects and events. In daily life, sensory information from the same source often is in close spatiotemporal proximity. This can be an important determinant of whether and how multisensory signals are combined. The introduction of advanced technical display systems allows to present multisensory information in virtual environments. However, technical displays can lack the spatiotemporal fidelity of the real world due the rendering delays. Thus, any spatiotemporal incongruency could alter how information is combined. In the current study we tested this by investigating if and how spatially and temporally discrepant tactile displacement cues can supplement imprecise visual displacement cues. Participants performed a visual displacement task with visual and tactile displacement cues under spatial and temporal incongruency conditions. We modelled how participants combined visual and tactile information in visuotactile condition using their performance in visual only condition. We found that temporal incongruency lead to an increase in tactile weights although they were correlated with the congruency condition. In contrast, the spatial incongruency led to individual differences altering cue combination strategies. Our results illustrate the importance of spatiotemporal congruency for combining tactile and visual cues when making visual displacement judgments. Given the altered cue combination strategies and individual differences, we recommend developers to adopt individual spatiotemporal calibration procedures to improve the efficiency of the sensory augmentation.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating the fidelity and spatial extent of electrotactile stimulation to elicit the embodiment of a virtual hand. 调节电触觉刺激的保真度和空间范围,诱发虚拟手的体现。
IF 2.4 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-07-05 DOI: 10.1109/TOH.2024.3424298
Martin A Garenfeld, Alba Jimenez-Diaz, Victor Navarro-Moreno, Mario Tormo, Matija Trbac, Erik Hernandez, Rosa M Banos, Rocio Herrero, Strahinja Dosen
{"title":"Modulating the fidelity and spatial extent of electrotactile stimulation to elicit the embodiment of a virtual hand.","authors":"Martin A Garenfeld, Alba Jimenez-Diaz, Victor Navarro-Moreno, Mario Tormo, Matija Trbac, Erik Hernandez, Rosa M Banos, Rocio Herrero, Strahinja Dosen","doi":"10.1109/TOH.2024.3424298","DOIUrl":"10.1109/TOH.2024.3424298","url":null,"abstract":"<p><p>Restoring tactile feedback in virtual reality can improve user experience and facilitate the feeling of embodiment. Electrotactile stimulation can be an attractive technology in this context as it is compact and allows for high-resolution spatially distributed stimulation. In the present study, a 32-channel tactile glove worn on the fingertips was used to provide tactile sensations during a virtual version of a rubber hand illusion experiment. To assess the benefits of multichannel stimulation, we modulated the spatial extent of feedback and its fidelity. Thirty-six participants performed the experiment in two conditions, in which stimulation was delivered to a single finger or all fingers, and three tactile stimulation types within each condition: no tactile feedback, simple single-point stimulation, and complex sliding stimulation mimicking the movements of the brush. Following each trial, the participants answered a multi-item embodiment questionnaire and reported the proprioceptive drift. The results confirmed that modulating the spatial extent of stimulation, from a single finger to all fingers, was indeed a successful strategy. When stimulating all fingers, tactile stimulation significantly improved all subjective measures compared to receiving no tactile stimulation. However, unexpectedly, the second strategy, that of modulating the fidelity of feedback, was not successful since there was no difference between the simple and complex tactile feedback in any of the measures. The results, therefore, imply that the effects of tactile feedback are better expressed in a more dynamic scenario (i.e., making/breaking contact and delivering stimulation to different body locations), while it still needs to be investigated if further improvements of the complex feedback can make it more effective compared to the simple approach.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial Haptics in the Metaverse: Haptic Feedback for Virtual, Augmented, Mixed, and eXtended Realities 特邀编辑 《元宇宙中的触觉技术》:虚拟现实、增强现实、混合现实和扩展现实的触觉反馈
IF 2.4 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-06-20 DOI: 10.1109/TOH.2024.3369192
Claudio Pacchierotti;Francesco Chinello;Konstantinos Koumaditis;Massimiliano Di Luca;Eyal Ofek;Orestis Georgiou
{"title":"Guest Editorial Haptics in the Metaverse: Haptic Feedback for Virtual, Augmented, Mixed, and eXtended Realities","authors":"Claudio Pacchierotti;Francesco Chinello;Konstantinos Koumaditis;Massimiliano Di Luca;Eyal Ofek;Orestis Georgiou","doi":"10.1109/TOH.2024.3369192","DOIUrl":"https://doi.org/10.1109/TOH.2024.3369192","url":null,"abstract":"In The last few years, we have witnessed the rapid development of many innovative devices and original techniques for providing haptic sensations, e.g., using force feedback, mid-air interfaces [1], [2], props and encounter-type devices [3], [4], or exploiting perceptual phenomena with cross-modal effects such as pseudo-haptics [5]. While increasingly immersive and realistic experiences have developed at a fast pace, the emergence of a “metaverse” proposes new use cases where prolonged utilisation and social interactions become more frequent and widespread [6]. The metaverse definition is continuously evolving, however, for now it can been seen as a collective virtual shared space, created by the convergence of the physical and digital worlds, where users interact, socialize, and engage with each other through digital representations of themselves. This new direction in social interactions presents the haptics community with new challenges and opportunities. Indeed, as eXtended Reality (XR)\u0000<sup>1</sup>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 2","pages":"122-128"},"PeriodicalIF":2.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Area Tactile Stimulation Using Interference of Multi-Frequency Airborne Ultrasound. 利用多频机载超声波干扰进行局部触觉刺激
IF 2.4 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-06-18 DOI: 10.1109/TOH.2024.3416333
Saya Mizutani, Shun Suzuki, Atsushi Matsubayashi, Masahiro Fujiwara, Yasutoshi Makino, Hiroyuki Shinoda
{"title":"Local Area Tactile Stimulation Using Interference of Multi-Frequency Airborne Ultrasound.","authors":"Saya Mizutani, Shun Suzuki, Atsushi Matsubayashi, Masahiro Fujiwara, Yasutoshi Makino, Hiroyuki Shinoda","doi":"10.1109/TOH.2024.3416333","DOIUrl":"10.1109/TOH.2024.3416333","url":null,"abstract":"<p><p>In spatiotemporal modulation (STM) and lateral modulation (LM) used in conventional mid-air ultrasound tactile stimulation, single or multiple focuses are moved by switching the ultrasound transducer phases. A problem with the phase switching method is the limitation of the focus motion speed due to rapid phase switching that causes sound pressure fluctuations. This paper proposes an LM method using multiple-frequency ultrasound to shift the ultrasound focal point without switching the phase. This method can demonstrate a continuous and stable moving stimulus with high-frequency components, without producing unnecessary audible noise. Using the proposed broadband LM covering up to 400 Hz, we found that a high-frequency 400 Hz LM applied at a finger pad can display a stimulation area with the diameters comparable to or less than the half wavelength of 40 kHz ultrasound, where the perceptual size was evaluated as 4. 2 mm for the long axis diameter and 3. 4 mm for the short axis diameter.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collagen Induces Anisotropy in Fingertip Subcutaneous Tissues During Contact. 胶原蛋白在接触过程中诱导指尖皮下组织的各向异性
IF 2.4 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-05-28 DOI: 10.1109/TOH.2024.3406251
Guillaume H C Duprez, Benoit P Delhaye, Laurent Delannay
{"title":"Collagen Induces Anisotropy in Fingertip Subcutaneous Tissues During Contact.","authors":"Guillaume H C Duprez, Benoit P Delhaye, Laurent Delannay","doi":"10.1109/TOH.2024.3406251","DOIUrl":"10.1109/TOH.2024.3406251","url":null,"abstract":"<p><p>The subcutaneous mechanical response of the fingertip is highly anisotropic due to the presence of a network of collagen fibers linking the outer skin layer to the bone. The impact of this anisotropy on the fingerpad deformation, which had not been studied until now, is here demonstrated using a two-dimensional finite element model of a transverse section of the finger. Different distributions of fiber orientations are considered: radial (physiologic), circumferential, and random (isotropic). The three variants of the model are assessed using experimental observations of a finger pressed on a flat surface. Predictions relying on the physiological orientation of fibers best reproduce experimental trends. Our results show that the orientation of fibers significantly influences the distribution of internal strains and stresses. This leads to a sudden change in the profile of contact pressure when transitioning from sticking to slipping. Interpreted in terms of tactile perception or sensation, these variations might represent important sensory cues for partial slip detection. This is also valuable information for the development of haptic devices.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hardness Perceived When Sliding Over Roughened Surfaces. 在粗糙表面上滑动时感受到的硬度
IF 2.9 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-05-27 DOI: 10.1109/TOH.2024.3405728
Qingyu Sun, Shogo Okamoto, Hongbo Wang
{"title":"Hardness Perceived When Sliding Over Roughened Surfaces.","authors":"Qingyu Sun, Shogo Okamoto, Hongbo Wang","doi":"10.1109/TOH.2024.3405728","DOIUrl":"https://doi.org/10.1109/TOH.2024.3405728","url":null,"abstract":"<p><p>The objective of this study was to investigate the influence of roughened surface features on the perceived hardness of various materials. Thirteen participants used a visual analog scale to evaluate the hardness of ten 3D-printed specimens by sliding a fingertip on them. The specimens had two types of surface features: flat and smooth, or with microscopic rectangular gratings. They were fabricated from two types of plastic with different Young's moduli-2.46 and 9.35 MPa. We found that both surface pattern and mechanical hardness significantly contributed to the perceived hardness of a material individually and without interaction. The roughened surfaces with rectangular gratings were judged to be harder than the flat and smooth surfaces of the same material. Among the parameters of the rectangular gratings, the groove width or periodic surface wavelength significantly contributed to the perceived hardness. Although the root cause of this phenomenon is unknown, friction caused by surface roughness is considered a potential mediator that influences the perceived hardness. The findings of this study can facilitate the manipulation of softness perception through surface design.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hands-Free Haptic Navigation Devices for Actual Walking. 用于实际行走的免提触觉导航设备
IF 2.9 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-05-27 DOI: 10.1109/TOH.2024.3405551
Astrid M L Kappers, Raymond J Holt, Tessa J W Junggeburth, Max Fa Si Oen, Bart J T van de Wetering, Myrthe A Plaisier
{"title":"Hands-Free Haptic Navigation Devices for Actual Walking.","authors":"Astrid M L Kappers, Raymond J Holt, Tessa J W Junggeburth, Max Fa Si Oen, Bart J T van de Wetering, Myrthe A Plaisier","doi":"10.1109/TOH.2024.3405551","DOIUrl":"https://doi.org/10.1109/TOH.2024.3405551","url":null,"abstract":"<p><p>In this survey, we give an overview of hands-free haptic devices specifically designed for navigation guidance while walking. We present and discuss the devices by body part, namely devices for the arm, foot and leg, back, belly and shoulders, waist and finally the head. Although the majority of the experimental tests were successful in terms of reaching the target while being guided by the device, the experimental requirements were wide-ranging. The distances to be covered ranged from just a few meters to more than a kilometer, and while some of the devices worked autonomously, others required the experimenter to act as Wizard of Oz. To compare the usefulness and potential of these devices, we created a table in which we rated several relevant aspects such as autonomy, conspicuity and compactness. Major conclusions are that outdoor devices have the highest technology readiness level, because these allow autonomous navigation through GPS, and that the most compact devices still require the action of an experimenter. Unfortunately, none of the hands-free devices are at a level of readiness where they could be useful to people with visual impairments. The most important factor that should be improved is localization accuracy, which should be high and available at all times.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信