{"title":"上半身振动引起的紧急反应的中枢顶叶α / β不对称。","authors":"Wanjoo Park, Haneen Alsuradi, Mohamad Eid","doi":"10.1109/TOH.2025.3561889","DOIUrl":null,"url":null,"abstract":"<p><p>Haptic feedback seems effective in conveying information at a desirable level of urgency. There is a growing interest in understanding the neural mechanisms associated with haptic feedback using electroencephalography (EEG) measures. In particular, EEG hemispheric asymmetry is known to be correlated with various cognitive functions such as emotions, stress, anxiety, and attention. The current study aimed to investigate EEG hemispheric asymmetry associated with perceived urgency elicited using vibration feedback on the upper body. A total of 31 participants experienced three vibration patterns designed to elicit three levels of urgency, namely the no vibration pattern (NVP), urgent vibration pattern (UVP), and very urgent vibration pattern (VUVP). In the event-related potential (ERP) analysis, N100, P200, and P300 components were observed under the UVP and VUVP conditions. Notably, these components were absent under the NVP condition. The P200 and P300 ERP components as well as the participants' self-reporting confirmed the two distinguishable levels of perceived urgency (urgent and very urgent). Furthermore, the alpha and beta hemispheric asymmetry in the centroparietal area was significantly higher in the UVP and VUVP conditions as compared to the NVP condition between 500 ms and 2000 ms after the stimulation onset (One-way ANOVA test, Bonferroni correction, p $< $ 0.05). This is the first study to investigate the EEG asymmetry in response to perceived urgency elicited by upper body vibrations. These results suggest that the alpha and beta hemispheric asymmetry in the centroparietal area is a valid feature for detecting urgency elicited by vibrations on the upper body.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centroparietal Alpha/Beta Asymmetry in Response to Urgency Elicited by Upper Body Vibration.\",\"authors\":\"Wanjoo Park, Haneen Alsuradi, Mohamad Eid\",\"doi\":\"10.1109/TOH.2025.3561889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Haptic feedback seems effective in conveying information at a desirable level of urgency. There is a growing interest in understanding the neural mechanisms associated with haptic feedback using electroencephalography (EEG) measures. In particular, EEG hemispheric asymmetry is known to be correlated with various cognitive functions such as emotions, stress, anxiety, and attention. The current study aimed to investigate EEG hemispheric asymmetry associated with perceived urgency elicited using vibration feedback on the upper body. A total of 31 participants experienced three vibration patterns designed to elicit three levels of urgency, namely the no vibration pattern (NVP), urgent vibration pattern (UVP), and very urgent vibration pattern (VUVP). In the event-related potential (ERP) analysis, N100, P200, and P300 components were observed under the UVP and VUVP conditions. Notably, these components were absent under the NVP condition. The P200 and P300 ERP components as well as the participants' self-reporting confirmed the two distinguishable levels of perceived urgency (urgent and very urgent). Furthermore, the alpha and beta hemispheric asymmetry in the centroparietal area was significantly higher in the UVP and VUVP conditions as compared to the NVP condition between 500 ms and 2000 ms after the stimulation onset (One-way ANOVA test, Bonferroni correction, p $< $ 0.05). This is the first study to investigate the EEG asymmetry in response to perceived urgency elicited by upper body vibrations. These results suggest that the alpha and beta hemispheric asymmetry in the centroparietal area is a valid feature for detecting urgency elicited by vibrations on the upper body.</p>\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TOH.2025.3561889\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2025.3561889","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Centroparietal Alpha/Beta Asymmetry in Response to Urgency Elicited by Upper Body Vibration.
Haptic feedback seems effective in conveying information at a desirable level of urgency. There is a growing interest in understanding the neural mechanisms associated with haptic feedback using electroencephalography (EEG) measures. In particular, EEG hemispheric asymmetry is known to be correlated with various cognitive functions such as emotions, stress, anxiety, and attention. The current study aimed to investigate EEG hemispheric asymmetry associated with perceived urgency elicited using vibration feedback on the upper body. A total of 31 participants experienced three vibration patterns designed to elicit three levels of urgency, namely the no vibration pattern (NVP), urgent vibration pattern (UVP), and very urgent vibration pattern (VUVP). In the event-related potential (ERP) analysis, N100, P200, and P300 components were observed under the UVP and VUVP conditions. Notably, these components were absent under the NVP condition. The P200 and P300 ERP components as well as the participants' self-reporting confirmed the two distinguishable levels of perceived urgency (urgent and very urgent). Furthermore, the alpha and beta hemispheric asymmetry in the centroparietal area was significantly higher in the UVP and VUVP conditions as compared to the NVP condition between 500 ms and 2000 ms after the stimulation onset (One-way ANOVA test, Bonferroni correction, p $< $ 0.05). This is the first study to investigate the EEG asymmetry in response to perceived urgency elicited by upper body vibrations. These results suggest that the alpha and beta hemispheric asymmetry in the centroparietal area is a valid feature for detecting urgency elicited by vibrations on the upper body.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.