Chungman Lim, Gyeongdeok Kim, Su-Yeon Kang, Hasti Seifi, Gunhyuk Park
{"title":"机器能感觉到振动吗?通过神经网络预测振动的粗糙度和情绪反应。","authors":"Chungman Lim, Gyeongdeok Kim, Su-Yeon Kang, Hasti Seifi, Gunhyuk Park","doi":"10.1109/TOH.2025.3568804","DOIUrl":null,"url":null,"abstract":"<p><p>Vibrotactile signals offer new possibilities for conveying sensations and emotions in various applications. Yet, designing vibrotactile tactile icons (i.e., Tactons) to evoke specific feelings often requires a trial-and-error process and user studies. To support haptic design, we propose a framework for predicting roughness and emotional ratings from vibration signals. We created 154 Tactons and conducted a study to collect acceleration data from smartphones and roughness, valence, and arousal user ratings (n=36). We converted the Tacton signals into two-channel spectrograms reflecting the spectral sensitivities of mechanoreceptors, then input them into VibNet, our dual-stream neural network. The first stream captures sequential features using recurrent networks, while the second captures temporal-spectral features using 2D convolutional networks. VibNet outperformed baseline models, with 82% of its predictions falling within the standard deviations of ground truth user ratings for two new Tacton sets. We discuss the efficacy of our mechanoreceptive processing and dual-stream neural network and present future research directions.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can a Machine Feel Vibrations?: Predicting Roughness and Emotional Responses to Vibration Tactons via a Neural Network.\",\"authors\":\"Chungman Lim, Gyeongdeok Kim, Su-Yeon Kang, Hasti Seifi, Gunhyuk Park\",\"doi\":\"10.1109/TOH.2025.3568804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vibrotactile signals offer new possibilities for conveying sensations and emotions in various applications. Yet, designing vibrotactile tactile icons (i.e., Tactons) to evoke specific feelings often requires a trial-and-error process and user studies. To support haptic design, we propose a framework for predicting roughness and emotional ratings from vibration signals. We created 154 Tactons and conducted a study to collect acceleration data from smartphones and roughness, valence, and arousal user ratings (n=36). We converted the Tacton signals into two-channel spectrograms reflecting the spectral sensitivities of mechanoreceptors, then input them into VibNet, our dual-stream neural network. The first stream captures sequential features using recurrent networks, while the second captures temporal-spectral features using 2D convolutional networks. VibNet outperformed baseline models, with 82% of its predictions falling within the standard deviations of ground truth user ratings for two new Tacton sets. We discuss the efficacy of our mechanoreceptive processing and dual-stream neural network and present future research directions.</p>\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TOH.2025.3568804\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2025.3568804","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Can a Machine Feel Vibrations?: Predicting Roughness and Emotional Responses to Vibration Tactons via a Neural Network.
Vibrotactile signals offer new possibilities for conveying sensations and emotions in various applications. Yet, designing vibrotactile tactile icons (i.e., Tactons) to evoke specific feelings often requires a trial-and-error process and user studies. To support haptic design, we propose a framework for predicting roughness and emotional ratings from vibration signals. We created 154 Tactons and conducted a study to collect acceleration data from smartphones and roughness, valence, and arousal user ratings (n=36). We converted the Tacton signals into two-channel spectrograms reflecting the spectral sensitivities of mechanoreceptors, then input them into VibNet, our dual-stream neural network. The first stream captures sequential features using recurrent networks, while the second captures temporal-spectral features using 2D convolutional networks. VibNet outperformed baseline models, with 82% of its predictions falling within the standard deviations of ground truth user ratings for two new Tacton sets. We discuss the efficacy of our mechanoreceptive processing and dual-stream neural network and present future research directions.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.