Correlation between reaction time, multi-modal feedback and take-over requests for level 3 automated vehicles.

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS
Jan Luca Kastle, Bani Anvari, Jan Peters, Jakub Kro, Helge Wurdemann
{"title":"Correlation between reaction time, multi-modal feedback and take-over requests for level 3 automated vehicles.","authors":"Jan Luca Kastle, Bani Anvari, Jan Peters, Jakub Kro, Helge Wurdemann","doi":"10.1109/TOH.2025.3555842","DOIUrl":null,"url":null,"abstract":"<p><p>We are currently experiencing a paradigm shift towards fully automated vehicles (AVs). On the way towards fully AVs, we will experience an increase in numbers of automated vehicles on our roads, requiring the human driver to take back control in situations, which cannot be handled by the vehicle. These human-robot take-over requests (TORs) can lead to safety risks, in particular in scenarios when the driver fails to understand the TOR and, hence, lacks situational awareness (SA). In this paper, the correlation between reaction time, multimodal feedback, informing the human driver of a transition in automation level, and success of transfer of control has been investigated. Nineteen human drivers have participated in experiments in a full-sized driving simulator: First, the driver was engaged in a secondary reading task while the car was in self-driving mode. Then, a TOR indicated to the driver to take back control. Seven different feedback modalities for the TORs have been created consisting of an audio chime, a visual cue or a static mechano-tactile haptic feedback, or a combination of these. The mechano-tactile feedback is hereby given through soft pneumatic actuators embedded into a novel soft robotic driver's seat. After the driver experienced the TOR, they were given seven seconds to regain SA, retake the driving task and react to a road incident ahead. Based on the results, it can be concluded that reaction times below 2.6 seconds and above 6 seconds result in an unsuccessful transfer of control. Additionally, we have found that haptic feedback results in a timely and safe transfer of control within a shorter time frame, when added to currently commercially available auditory and visual feedback.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2025.3555842","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

We are currently experiencing a paradigm shift towards fully automated vehicles (AVs). On the way towards fully AVs, we will experience an increase in numbers of automated vehicles on our roads, requiring the human driver to take back control in situations, which cannot be handled by the vehicle. These human-robot take-over requests (TORs) can lead to safety risks, in particular in scenarios when the driver fails to understand the TOR and, hence, lacks situational awareness (SA). In this paper, the correlation between reaction time, multimodal feedback, informing the human driver of a transition in automation level, and success of transfer of control has been investigated. Nineteen human drivers have participated in experiments in a full-sized driving simulator: First, the driver was engaged in a secondary reading task while the car was in self-driving mode. Then, a TOR indicated to the driver to take back control. Seven different feedback modalities for the TORs have been created consisting of an audio chime, a visual cue or a static mechano-tactile haptic feedback, or a combination of these. The mechano-tactile feedback is hereby given through soft pneumatic actuators embedded into a novel soft robotic driver's seat. After the driver experienced the TOR, they were given seven seconds to regain SA, retake the driving task and react to a road incident ahead. Based on the results, it can be concluded that reaction times below 2.6 seconds and above 6 seconds result in an unsuccessful transfer of control. Additionally, we have found that haptic feedback results in a timely and safe transfer of control within a shorter time frame, when added to currently commercially available auditory and visual feedback.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信