{"title":"Discrete Ω-results for the Riemann zeta function","authors":"Paolo Minelli, Athanasios Sourmelidis","doi":"10.1515/forum-2023-0324","DOIUrl":"https://doi.org/10.1515/forum-2023-0324","url":null,"abstract":"We study lower bounds for the Riemann zeta function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ζ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>s</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0324_eq_0200.png\"/> <jats:tex-math>{zeta(s)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> along vertical arithmetic progressions in the right-half of the critical strip. We show that the lower bounds obtained in the discrete case coincide, up to the constants in the exponential, with the ones known for the continuous case, that is when the imaginary part of <jats:italic>s</jats:italic> ranges on a given interval. Our methods are based on a discretization of the resonance method for estimating extremal values of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ζ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>s</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0324_eq_0200.png\"/> <jats:tex-math>{zeta(s)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"24 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdolnaser Bahlekeh, Fahimeh Sadat Fotouhi, Mohammad Amin Hamlehdari, Shokrollah Salarian
{"title":"The stable category of monomorphisms between (Gorenstein) projective modules with applications","authors":"Abdolnaser Bahlekeh, Fahimeh Sadat Fotouhi, Mohammad Amin Hamlehdari, Shokrollah Salarian","doi":"10.1515/forum-2023-0317","DOIUrl":"https://doi.org/10.1515/forum-2023-0317","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>S</m:mi> <m:mo>,</m:mo> <m:mi>𝔫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0072.png\"/> <jats:tex-math>{(S,{mathfrak{n}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a commutative noetherian local ring and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ω</m:mi> <m:mo>∈</m:mo> <m:mi>𝔫</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0207.png\"/> <jats:tex-math>{omegain{mathfrak{n}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be non-zerodivisor. This paper is concerned with the two categories of monomorphisms between finitely generated (Gorenstein) projective <jats:italic>S</jats:italic>-modules, such that their cokernels are annihilated by ω. It is shown that these categories, which will be denoted by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0342.png\"/> <jats:tex-math>{{mathsf{Mon}}(omega,mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒢</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0341.png\"/> <jats:tex-math>{{mathsf{Mon}}(omega,mathcal{G})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, are both Frobenius categories with the same projective objects. It is also proved that the stable category <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:munder accentunder=\"true\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0277.png\"/> <jats:tex-math>{underline{mathsf{Mon}}(omega,mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is triangle equivalent to the category of D-bran","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"60 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Big pure projective modules over commutative noetherian rings: Comparison with the completion","authors":"Dolors Herbera, Pavel Příhoda, Roger Wiegand","doi":"10.1515/forum-2024-0031","DOIUrl":"https://doi.org/10.1515/forum-2024-0031","url":null,"abstract":"A module over a ring <jats:italic>R</jats:italic> is <jats:italic>pure projective</jats:italic> provided it is isomorphic to a direct summand of a direct sum of finitely presented modules. We develop tools for the classification of pure projective modules over commutative noetherian rings. In particular, for a fixed finitely presented module <jats:italic>M</jats:italic>, we consider <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Add</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0031_eq_1297.png\"/> <jats:tex-math>{operatorname{Add}(M)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which consists of direct summands of direct sums of copies of <jats:italic>M</jats:italic>. We are primarily interested in the case where <jats:italic>R</jats:italic> is a one-dimensional, local domain, and in torsion-free (or Cohen–Macaulay) modules. We show that, even in this case, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Add</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0031_eq_1297.png\"/> <jats:tex-math>{operatorname{Add}(M)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> can have an abundance of modules that are not direct sums of finitely generated ones. Our work is based on the fact that such infinitely generated direct summands are all determined by finitely generated data. Namely, idempotent/trace ideals of the endomorphism ring of <jats:italic>M</jats:italic> and finitely generated projective modules modulo such idempotent ideals. This allows us to extend the classical theory developed to study the behaviour of direct sum decomposition of finitely generated modules comparing with their completion to the infinitely generated case. We study the structure of the monoid <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>V</m:mi> <m:mo>*</m:mo> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0031_eq_0807.png\"/> <jats:tex-math>{V^{*}(M)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, of isomorphism classes of countably generated modules in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Add</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"6 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Any Sasakian structure is approximated by embeddings into spheres","authors":"Andrea Loi, Giovanni Placini","doi":"10.1515/forum-2023-0364","DOIUrl":"https://doi.org/10.1515/forum-2023-0364","url":null,"abstract":"We show that, for any given <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>q</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0364_eq_0372.png\"/> <jats:tex-math>{qgeq 0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, any Sasakian structure on a closed manifold <jats:italic>M</jats:italic> is approximated in the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mi>q</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0364_eq_0146.png\"/> <jats:tex-math>{C^{{q}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-norm by structures induced by CR embeddings into weighted Sasakian spheres. In order to obtain this result, we also strengthen the approximation of an orbifold Kähler form by projectively induced ones given in [J. Ross and R. Thomas, Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics, J. Differential Geom. 88 2011, 1, 109–159] in the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mn>0</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0364_eq_0138.png\"/> <jats:tex-math>{C^{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-norm to a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mi>q</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0364_eq_0146.png\"/> <jats:tex-math>{C^{{q}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-approximation.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"161 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quasi-triangular, factorizable Leibniz bialgebras and relative Rota–Baxter operators","authors":"Chengming Bai, Guilai Liu, Yunhe Sheng, Rong Tang","doi":"10.1515/forum-2023-0268","DOIUrl":"https://doi.org/10.1515/forum-2023-0268","url":null,"abstract":"We introduce the notion of quasi-triangular Leibniz bialgebras, which can be constructed from solutions of the classical Leibniz Yang–Baxter equation (CLYBE) whose skew-symmetric parts are invariant. In addition to triangular Leibniz bialgebras, quasi-triangular Leibniz bialgebras contain factorizable Leibniz bialgebras as another subclass, which lead to a factorization of the underlying Leibniz algebras. Relative Rota–Baxter operators with weights on Leibniz algebras are used to characterize solutions of the CLYBE whose skew-symmetric parts are invariant. On skew-symmetric quadratic Leibniz algebras, such operators correspond to Rota–Baxter type operators. Consequently, we introduce the notion of skew-symmetric quadratic Rota–Baxter Leibniz algebras, such that they give rise to triangular Leibniz bialgebras in the case of weight 0, while they are in one-to-one correspondence with factorizable Leibniz bialgebras in the case of nonzero weights.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"14 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative weighted estimates for the multilinear pseudo-differential operators in function spaces","authors":"Jiawei Tan, Qingying Xue","doi":"10.1515/forum-2023-0454","DOIUrl":"https://doi.org/10.1515/forum-2023-0454","url":null,"abstract":"In this paper, the weighted estimates for multilinear pseudo-differential operators were systematically studied in rearrangement invariant Banach and quasi-Banach spaces. These spaces contain the Lebesgue space, the classical Lorentz space and Marcinkiewicz space as typical examples. More precisely, the weighted boundedness and weighted modular estimates, including the weak endpoint case, were established for multilinear pseudo-differential operators and their commutators. As applications, we show that the above results also hold for the multilinear Fourier multipliers, multilinear square functions, and a class of multilinear Calderón–Zygmund operators.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"12 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on conjugacy of supplements in soluble periodic linear groups","authors":"Marco Trombetti","doi":"10.1515/forum-2024-0102","DOIUrl":"https://doi.org/10.1515/forum-2024-0102","url":null,"abstract":"The aim of this short note is to prove that if <jats:italic>G</jats:italic> is a (homomorphic images of a) soluble periodic linear group and <jats:italic>N</jats:italic> is a locally nilpotent normal subgroup of <jats:italic>G</jats:italic> such that <jats:italic>N</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:mi>N</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0102_eq_0133.png\"/> <jats:tex-math>{G/N}</jats:tex-math> </jats:alternatives> </jats:inline-formula> have no isomorphic <jats:italic>G</jats:italic>-chief factors, then two supplements to <jats:italic>N</jats:italic> in <jats:italic>G</jats:italic> are conjugate provided that they have the same intersection with <jats:italic>N</jats:italic>. This result follows from well-known theorems in the theory of Schunck classes (see [A. Ballester-Bolinches and L. M. Ezquerro, On conjugacy of supplements of normal subgroups of finite groups, Bull. Aust. Math. Soc. 89 2014, 2, 293–299]), and it appeared as the main theorem of [C. Parker and P. Rowley, A note on conjugacy of supplements in finite soluble groups, Bull. Lond. Math. Soc. 42 2010, 3, 417–419].","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"199 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gradings and graded linear maps on algebras","authors":"Antonio Ioppolo, Fabrizio Martino","doi":"10.1515/forum-2024-0098","DOIUrl":"https://doi.org/10.1515/forum-2024-0098","url":null,"abstract":"Let <jats:italic>A</jats:italic> be a superalgebra over a field <jats:italic>F</jats:italic> of characteristic zero. We prove tight relations between graded automorphisms, pseudoautomorphisms, superautomorphisms and <jats:italic>K</jats:italic>-gradings on <jats:italic>A</jats:italic>, where <jats:italic>K</jats:italic> is the Klein group. Moreover, we investigate the consequences of such connections within the theory of polynomial identities. In the second part we focus on the superalgebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>U</m:mi> <m:mo></m:mo> <m:msub> <m:mi>T</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0098_eq_0217.png\"/> <jats:tex-math>{UT_{n}(F)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0098_eq_0407.png\"/> <jats:tex-math>{ntimes n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> upper triangular matrices by completely classifying the graded-pseudo-super automorphism that one can define on it. Finally, we compute the ideals of identities of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>U</m:mi> <m:mo></m:mo> <m:msub> <m:mi>T</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0098_eq_0217.png\"/> <jats:tex-math>{UT_{n}(F)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> endowed with a graded or a pseudo automorphism, for any <jats:italic>n</jats:italic>, and the ideals of identities with superautomorphism in the cases <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0098_eq_0403.png\"/> <jats:tex-math>{n=2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0098_eq_0404.png\"/> <jats:tex-math>{n=3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"40 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GIT quotient of holomorphic foliations on ℂℙ2 of degree 2 and quartic plane curves","authors":"Claudia R. Alcántara, Juan Vásquez Aquino","doi":"10.1515/forum-2024-0043","DOIUrl":"https://doi.org/10.1515/forum-2024-0043","url":null,"abstract":"We study the quotient variety of the space of foliations on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ℂ</m:mi> <m:mo></m:mo> <m:msup> <m:mi>ℙ</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0043_eq_1268.png\"/> <jats:tex-math>{mathbb{CP}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of degree 2 up to change of coordinates. We find the intersection Betti numbers of this variety. As a corollary, we have that these intersection Betti numbers coincide with the intersection Betti numbers of the quotient variety of quartic plane curves. Finally, we give an explicit isomorphism between the space of foliations of degree 2 with different singular points, without invariant lines and the space of smooth quartic plane curves.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"12 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}