Quasi-triangular, factorizable Leibniz bialgebras and relative Rota–Baxter operators

IF 1 3区 数学 Q1 MATHEMATICS
Chengming Bai, Guilai Liu, Yunhe Sheng, Rong Tang
{"title":"Quasi-triangular, factorizable Leibniz bialgebras and relative Rota–Baxter operators","authors":"Chengming Bai, Guilai Liu, Yunhe Sheng, Rong Tang","doi":"10.1515/forum-2023-0268","DOIUrl":null,"url":null,"abstract":"We introduce the notion of quasi-triangular Leibniz bialgebras, which can be constructed from solutions of the classical Leibniz Yang–Baxter equation (CLYBE) whose skew-symmetric parts are invariant. In addition to triangular Leibniz bialgebras, quasi-triangular Leibniz bialgebras contain factorizable Leibniz bialgebras as another subclass, which lead to a factorization of the underlying Leibniz algebras. Relative Rota–Baxter operators with weights on Leibniz algebras are used to characterize solutions of the CLYBE whose skew-symmetric parts are invariant. On skew-symmetric quadratic Leibniz algebras, such operators correspond to Rota–Baxter type operators. Consequently, we introduce the notion of skew-symmetric quadratic Rota–Baxter Leibniz algebras, such that they give rise to triangular Leibniz bialgebras in the case of weight 0, while they are in one-to-one correspondence with factorizable Leibniz bialgebras in the case of nonzero weights.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0268","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the notion of quasi-triangular Leibniz bialgebras, which can be constructed from solutions of the classical Leibniz Yang–Baxter equation (CLYBE) whose skew-symmetric parts are invariant. In addition to triangular Leibniz bialgebras, quasi-triangular Leibniz bialgebras contain factorizable Leibniz bialgebras as another subclass, which lead to a factorization of the underlying Leibniz algebras. Relative Rota–Baxter operators with weights on Leibniz algebras are used to characterize solutions of the CLYBE whose skew-symmetric parts are invariant. On skew-symmetric quadratic Leibniz algebras, such operators correspond to Rota–Baxter type operators. Consequently, we introduce the notion of skew-symmetric quadratic Rota–Baxter Leibniz algebras, such that they give rise to triangular Leibniz bialgebras in the case of weight 0, while they are in one-to-one correspondence with factorizable Leibniz bialgebras in the case of nonzero weights.
准三角形、可因化莱布尼兹双桥和相对罗塔-巴克斯特算子
我们引入了准三角形莱布尼兹双桥的概念,它可以从经典莱布尼兹杨-巴克斯特方程(CLYBE)的解中构造出来,其偏斜对称部分是不变的。除了三角形莱布尼兹双桥之外,准三角形莱布尼兹双桥还包含另一个子类--可因子化莱布尼兹双桥,这导致了底层莱布尼兹桥的因子化。莱布尼兹二元组上带权重的相对罗塔-巴克斯特算子被用来描述其偏斜对称部分不变的 CLYBE 解。在偏斜对称二次莱布尼兹布拉上,此类算子与罗塔-巴克斯特类型算子相对应。因此,我们引入了偏斜对称二次 Rota-Baxter 莱布尼兹代数的概念,即在权重为 0 的情况下,它们产生三角形莱布尼兹双桥,而在权重不为 0 的情况下,它们与可因式分解莱布尼兹双桥一一对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信