度数为 2 的ℂℙ2 上全形叶形的 GIT 商和四元平面曲线

IF 1 3区 数学 Q1 MATHEMATICS
Claudia R. Alcántara, Juan Vásquez Aquino
{"title":"度数为 2 的ℂℙ2 上全形叶形的 GIT 商和四元平面曲线","authors":"Claudia R. Alcántara, Juan Vásquez Aquino","doi":"10.1515/forum-2024-0043","DOIUrl":null,"url":null,"abstract":"We study the quotient variety of the space of foliations on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ℂ</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>ℙ</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0043_eq_1268.png\"/> <jats:tex-math>{\\mathbb{CP}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of degree 2 up to change of coordinates. We find the intersection Betti numbers of this variety. As a corollary, we have that these intersection Betti numbers coincide with the intersection Betti numbers of the quotient variety of quartic plane curves. Finally, we give an explicit isomorphism between the space of foliations of degree 2 with different singular points, without invariant lines and the space of smooth quartic plane curves.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"12 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GIT quotient of holomorphic foliations on ℂℙ2 of degree 2 and quartic plane curves\",\"authors\":\"Claudia R. Alcántara, Juan Vásquez Aquino\",\"doi\":\"10.1515/forum-2024-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the quotient variety of the space of foliations on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>ℂ</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>ℙ</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0043_eq_1268.png\\\"/> <jats:tex-math>{\\\\mathbb{CP}^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of degree 2 up to change of coordinates. We find the intersection Betti numbers of this variety. As a corollary, we have that these intersection Betti numbers coincide with the intersection Betti numbers of the quotient variety of quartic plane curves. Finally, we give an explicit isomorphism between the space of foliations of degree 2 with different singular points, without invariant lines and the space of smooth quartic plane curves.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2024-0043\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2024-0043","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是ℂ ℙ 2 上{\mathbb{CP}^{2}}度为 2 且坐标不变的叶状空间的商变种。我们找到了这一曲面的交点贝蒂数。推论是,这些交集贝蒂数与四元平面曲线商综的交集贝蒂数重合。最后,我们给出了具有不同奇异点且无不变线的 2 度叶形空间与光滑四元平面曲线空间之间的明确同构关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GIT quotient of holomorphic foliations on ℂℙ2 of degree 2 and quartic plane curves
We study the quotient variety of the space of foliations on 2 {\mathbb{CP}^{2}} of degree 2 up to change of coordinates. We find the intersection Betti numbers of this variety. As a corollary, we have that these intersection Betti numbers coincide with the intersection Betti numbers of the quotient variety of quartic plane curves. Finally, we give an explicit isomorphism between the space of foliations of degree 2 with different singular points, without invariant lines and the space of smooth quartic plane curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信