{"title":"乘法和后继加法可以定义吗?","authors":"Friedrich Wehrung","doi":"10.1515/forum-2024-0245","DOIUrl":null,"url":null,"abstract":"A map <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>S</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0245_eq_0433.png\"/> <jats:tex-math>{f\\colon R\\to S}</jats:tex-math> </jats:alternatives> </jats:inline-formula> between (associative, unital, but not necessarily commutative) rings is a <jats:italic>brachymorphism</jats:italic> if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0245_eq_0398.png\"/> <jats:tex-math>{f(1+x)=1+f(x)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0245_eq_0422.png\"/> <jats:tex-math>{f(xy)=f(x)f(y)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> whenever <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi>R</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0245_eq_0522.png\"/> <jats:tex-math>{x,y\\in R}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We tackle the problem whether every brachymorphism is additive (i.e., <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>+</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0245_eq_0420.png\"/> <jats:tex-math>{f(x+y)=f(x)+f(y)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>), showing that in many contexts, including the following, the answer is positive: <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>•</jats:label> <jats:italic>R</jats:italic> is finite (or, more generally, <jats:italic>R</jats:italic> is left or right Artinian); </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>R</jats:italic> is any ring of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>2</m:mn> <m:mo>×</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0245_eq_0212.png\"/> <jats:tex-math>{2\\times 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> matrices over a commutative ring; </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>R</jats:italic> is Engelian; </jats:list-item> <jats:list-item> <jats:label>•</jats:label> every element of <jats:italic>R</jats:italic> is a sum of π-regular and central elements (this applies to π-regular rings, Banach algebras, and power series rings); </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>R</jats:italic> is the full matrix ring of order greater than 1 over any ring; </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>R</jats:italic> is the monoid ring <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>K</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0245_eq_0224.png\"/> <jats:tex-math>{K[M]}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for a commutative ring <jats:italic>K</jats:italic> and a π-regular monoid <jats:italic>M</jats:italic>; </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>R</jats:italic> is the Weyl algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>𝖠</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>K</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0245_eq_0289.png\"/> <jats:tex-math>{\\mathsf{A}_{1}(K)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> over a commutative ring <jats:italic>K</jats:italic> with positive characteristic; </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>f</jats:italic> is the power function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>x</m:mi> <m:mo>↦</m:mo> <m:msup> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0245_eq_0538.png\"/> <jats:tex-math>{x\\mapsto x^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> over any ring; </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>f</jats:italic> is the determinant function over any ring <jats:italic>R</jats:italic> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0245_eq_0467.png\"/> <jats:tex-math>{n\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> matrices, with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0245_eq_0464.png\"/> <jats:tex-math>{n\\geq 3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, over a commutative ring, such that if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>></m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0245_eq_0462.png\"/> <jats:tex-math>{n>3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:italic>R</jats:italic> contains <jats:italic>n</jats:italic> scalar matrices with non zero divisor differences. </jats:list-item> </jats:list>","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is addition definable from multiplication and successor?\",\"authors\":\"Friedrich Wehrung\",\"doi\":\"10.1515/forum-2024-0245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A map <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>S</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0245_eq_0433.png\\\"/> <jats:tex-math>{f\\\\colon R\\\\to S}</jats:tex-math> </jats:alternatives> </jats:inline-formula> between (associative, unital, but not necessarily commutative) rings is a <jats:italic>brachymorphism</jats:italic> if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0245_eq_0398.png\\\"/> <jats:tex-math>{f(1+x)=1+f(x)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0245_eq_0422.png\\\"/> <jats:tex-math>{f(xy)=f(x)f(y)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> whenever <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi>R</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0245_eq_0522.png\\\"/> <jats:tex-math>{x,y\\\\in R}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We tackle the problem whether every brachymorphism is additive (i.e., <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>+</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0245_eq_0420.png\\\"/> <jats:tex-math>{f(x+y)=f(x)+f(y)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>), showing that in many contexts, including the following, the answer is positive: <jats:list list-type=\\\"bullet\\\"> <jats:list-item> <jats:label>•</jats:label> <jats:italic>R</jats:italic> is finite (or, more generally, <jats:italic>R</jats:italic> is left or right Artinian); </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>R</jats:italic> is any ring of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>2</m:mn> <m:mo>×</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0245_eq_0212.png\\\"/> <jats:tex-math>{2\\\\times 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> matrices over a commutative ring; </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>R</jats:italic> is Engelian; </jats:list-item> <jats:list-item> <jats:label>•</jats:label> every element of <jats:italic>R</jats:italic> is a sum of π-regular and central elements (this applies to π-regular rings, Banach algebras, and power series rings); </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>R</jats:italic> is the full matrix ring of order greater than 1 over any ring; </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>R</jats:italic> is the monoid ring <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>K</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0245_eq_0224.png\\\"/> <jats:tex-math>{K[M]}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for a commutative ring <jats:italic>K</jats:italic> and a π-regular monoid <jats:italic>M</jats:italic>; </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>R</jats:italic> is the Weyl algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>𝖠</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>K</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0245_eq_0289.png\\\"/> <jats:tex-math>{\\\\mathsf{A}_{1}(K)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> over a commutative ring <jats:italic>K</jats:italic> with positive characteristic; </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>f</jats:italic> is the power function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>x</m:mi> <m:mo>↦</m:mo> <m:msup> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0245_eq_0538.png\\\"/> <jats:tex-math>{x\\\\mapsto x^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> over any ring; </jats:list-item> <jats:list-item> <jats:label>•</jats:label> <jats:italic>f</jats:italic> is the determinant function over any ring <jats:italic>R</jats:italic> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0245_eq_0467.png\\\"/> <jats:tex-math>{n\\\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> matrices, with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0245_eq_0464.png\\\"/> <jats:tex-math>{n\\\\geq 3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, over a commutative ring, such that if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>></m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0245_eq_0462.png\\\"/> <jats:tex-math>{n>3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:italic>R</jats:italic> contains <jats:italic>n</jats:italic> scalar matrices with non zero divisor differences. </jats:list-item> </jats:list>\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2024-0245\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2024-0245","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
映射 f : 如果 f ( 1 + x ) = 1 + f ( x ) {f(1+x)=1+f(x)} 和 f ( x y ) = f ( x ) f ( y ) {f(xy)=f(x)f(y)} 当 x , y∈ R {x,y\in R} 时,则 f 是一个括号变形。 .我们要解决的问题是,是否每个 brachymorphism 都是可加的(即 f ( x + y ) = f ( x ) + f ( y ) {f(x+y)=f(x)+f(y)} ),结果表明,在许多情况下,包括下面的情况,答案都是肯定的: - R 是有限的(或者,更一般地说,R 是左或右阿蒂尼环);- R 是交换环上任何 2 × 2 {2\times 2} 矩阵环;- R 是恩格尔环;- R 的每个元素都是π-正则元素与中心元素之和(这适用于π-正则环、巴纳赫代数和幂级数环); - R 是任意环上阶数大于 1 的全矩阵环; - R 是交换环 K 和 π-regular 单元 M 的单元环 K [ M ] {K[M]}; - R 是具有正特征的交换环 K 上的韦尔代数 𝖠 1 ( K ) {\mathsf{A}_{1}(K)}; - f 是任意环上的幂函数 x ↦ x n {x\mapsto x^{n}} ; - f 是任意环 R 上 n×n {n\times n} 矩阵的行列式函数,n ≥ 3 {n\geq 3} ,在交换环上,如果 n > 3 {n>3} ,则 R 包含 n 个标量矩阵。 则 R 包含 n 个除数差不为零的标量矩阵。
Is addition definable from multiplication and successor?
A map f:R→S{f\colon R\to S} between (associative, unital, but not necessarily commutative) rings is a brachymorphism if f(1+x)=1+f(x){f(1+x)=1+f(x)} and f(xy)=f(x)f(y){f(xy)=f(x)f(y)} whenever x,y∈R{x,y\in R}. We tackle the problem whether every brachymorphism is additive (i.e., f(x+y)=f(x)+f(y){f(x+y)=f(x)+f(y)}), showing that in many contexts, including the following, the answer is positive: •R is finite (or, more generally, R is left or right Artinian); •R is any ring of 2×2{2\times 2} matrices over a commutative ring; •R is Engelian; • every element of R is a sum of π-regular and central elements (this applies to π-regular rings, Banach algebras, and power series rings); •R is the full matrix ring of order greater than 1 over any ring; •R is the monoid ring K[M]{K[M]} for a commutative ring K and a π-regular monoid M; •R is the Weyl algebra 𝖠1(K){\mathsf{A}_{1}(K)} over a commutative ring K with positive characteristic; •f is the power function x↦xn{x\mapsto x^{n}} over any ring; •f is the determinant function over any ring R of n×n{n\times n} matrices, with n≥3{n\geq 3}, over a commutative ring, such that if n>3{n>3}, then R contains n scalar matrices with non zero divisor differences.
期刊介绍:
Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.