Big pure projective modules over commutative noetherian rings: Comparison with the completion

IF 1 3区 数学 Q1 MATHEMATICS
Dolors Herbera, Pavel Příhoda, Roger Wiegand
{"title":"Big pure projective modules over commutative noetherian rings: Comparison with the completion","authors":"Dolors Herbera, Pavel Příhoda, Roger Wiegand","doi":"10.1515/forum-2024-0031","DOIUrl":null,"url":null,"abstract":"A module over a ring <jats:italic>R</jats:italic> is <jats:italic>pure projective</jats:italic> provided it is isomorphic to a direct summand of a direct sum of finitely presented modules. We develop tools for the classification of pure projective modules over commutative noetherian rings. In particular, for a fixed finitely presented module <jats:italic>M</jats:italic>, we consider <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Add</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0031_eq_1297.png\"/> <jats:tex-math>{\\operatorname{Add}(M)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which consists of direct summands of direct sums of copies of <jats:italic>M</jats:italic>. We are primarily interested in the case where <jats:italic>R</jats:italic> is a one-dimensional, local domain, and in torsion-free (or Cohen–Macaulay) modules. We show that, even in this case, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Add</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0031_eq_1297.png\"/> <jats:tex-math>{\\operatorname{Add}(M)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> can have an abundance of modules that are not direct sums of finitely generated ones. Our work is based on the fact that such infinitely generated direct summands are all determined by finitely generated data. Namely, idempotent/trace ideals of the endomorphism ring of <jats:italic>M</jats:italic> and finitely generated projective modules modulo such idempotent ideals. This allows us to extend the classical theory developed to study the behaviour of direct sum decomposition of finitely generated modules comparing with their completion to the infinitely generated case. We study the structure of the monoid <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>V</m:mi> <m:mo>*</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0031_eq_0807.png\"/> <jats:tex-math>{V^{*}(M)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, of isomorphism classes of countably generated modules in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Add</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0031_eq_1297.png\"/> <jats:tex-math>{\\operatorname{Add}(M)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with the addition induced by the direct sum. We show that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>V</m:mi> <m:mo>*</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0031_eq_0807.png\"/> <jats:tex-math>{V^{*}(M)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a submonoid of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>V</m:mi> <m:mo>*</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>M</m:mi> <m:msub> <m:mo>⊗</m:mo> <m:mi>R</m:mi> </m:msub> <m:mover accent=\"true\"> <m:mi>R</m:mi> <m:mo>^</m:mo> </m:mover> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0031_eq_0808.png\"/> <jats:tex-math>{V^{*}(M\\otimes_{R}\\widehat{R})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, this allows us to make computations with examples and to prove some realization results.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2024-0031","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A module over a ring R is pure projective provided it is isomorphic to a direct summand of a direct sum of finitely presented modules. We develop tools for the classification of pure projective modules over commutative noetherian rings. In particular, for a fixed finitely presented module M, we consider Add ( M ) {\operatorname{Add}(M)} , which consists of direct summands of direct sums of copies of M. We are primarily interested in the case where R is a one-dimensional, local domain, and in torsion-free (or Cohen–Macaulay) modules. We show that, even in this case, Add ( M ) {\operatorname{Add}(M)} can have an abundance of modules that are not direct sums of finitely generated ones. Our work is based on the fact that such infinitely generated direct summands are all determined by finitely generated data. Namely, idempotent/trace ideals of the endomorphism ring of M and finitely generated projective modules modulo such idempotent ideals. This allows us to extend the classical theory developed to study the behaviour of direct sum decomposition of finitely generated modules comparing with their completion to the infinitely generated case. We study the structure of the monoid V * ( M ) {V^{*}(M)} , of isomorphism classes of countably generated modules in Add ( M ) {\operatorname{Add}(M)} with the addition induced by the direct sum. We show that V * ( M ) {V^{*}(M)} is a submonoid of V * ( M R R ^ ) {V^{*}(M\otimes_{R}\widehat{R})} , this allows us to make computations with examples and to prove some realization results.
交换诺特环上的大纯投影模块:与完形比较
环 R 上的模块是纯投影模块,前提是它与有限呈现模块的直接和的直接和同构。我们开发了对交换诺特环上的纯投影模块进行分类的工具。特别是,对于一个固定的有限呈现模块 M,我们考虑 Add ( M ) {\operatorname{Add}(M)} ,它由 M 的副本的直接和的直接和组成。我们主要关注 R 是一维局部域的情况,以及无扭(或 Cohen-Macaulay)模块。我们证明,即使在这种情况下,Add ( M ) {\operatorname{Add}(M)} 也可以有大量模块不是有限生成模块的直和。我们的工作基于这样一个事实:这种无限生成的直接和都是由有限生成的数据决定的。也就是说,M 的内态环的幂幂/迹理想和有限生成的投影模块模都是由这些幂幂理想决定的。这样,我们就可以将研究有限生成模块的直接和分解与其完备性比较的经典理论扩展到无限生成的情况。我们研究了单元 V * ( M ) {V^{*}(M)} 的结构,即 Add ( M ) {\operatorname{Add}(M)} 中由直接相加诱导的可数生成模块的同构类。我们证明了 V * ( M ) {V^{*}(M)} 是 V * ( M ⊗ R R ^ ) {V^{*}(M\otimes_{R}\widehat{R})} 的子单体,这让我们可以进行计算。 这样,我们就可以利用实例进行计算,并证明一些实现结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信