The stable category of monomorphisms between (Gorenstein) projective modules with applications

IF 1 3区 数学 Q1 MATHEMATICS
Abdolnaser Bahlekeh, Fahimeh Sadat Fotouhi, Mohammad Amin Hamlehdari, Shokrollah Salarian
{"title":"The stable category of monomorphisms between (Gorenstein) projective modules with applications","authors":"Abdolnaser Bahlekeh, Fahimeh Sadat Fotouhi, Mohammad Amin Hamlehdari, Shokrollah Salarian","doi":"10.1515/forum-2023-0317","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>S</m:mi> <m:mo>,</m:mo> <m:mi>𝔫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0072.png\"/> <jats:tex-math>{(S,{\\mathfrak{n}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a commutative noetherian local ring and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ω</m:mi> <m:mo>∈</m:mo> <m:mi>𝔫</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0207.png\"/> <jats:tex-math>{\\omega\\in{\\mathfrak{n}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be non-zerodivisor. This paper is concerned with the two categories of monomorphisms between finitely generated (Gorenstein) projective <jats:italic>S</jats:italic>-modules, such that their cokernels are annihilated by ω. It is shown that these categories, which will be denoted by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0342.png\"/> <jats:tex-math>{{\\mathsf{Mon}}(\\omega,\\mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒢</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0341.png\"/> <jats:tex-math>{{\\mathsf{Mon}}(\\omega,\\mathcal{G})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, are both Frobenius categories with the same projective objects. It is also proved that the stable category <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:munder accentunder=\"true\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0277.png\"/> <jats:tex-math>{\\underline{\\mathsf{Mon}}(\\omega,\\mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is triangle equivalent to the category of D-branes of type B, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝖣𝖡</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0181.png\"/> <jats:tex-math>{\\mathsf{DB}(\\omega)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which has been introduced by Kontsevich and studied by Orlov. Moreover, it will be observed that the stable categories <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:munder accentunder=\"true\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0277.png\"/> <jats:tex-math>{\\underline{\\mathsf{Mon}}(\\omega,\\mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:munder accentunder=\"true\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒢</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0276.png\"/> <jats:tex-math>{\\underline{\\mathsf{Mon}}(\\omega,\\mathcal{G})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are closely related to the singularity category of the factor ring <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>R</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>S</m:mi> <m:mo>/</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0136.png\"/> <jats:tex-math>{R=S/({\\omega)}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Precisely, there is a fully faithful triangle functor from the stable category <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:munder accentunder=\"true\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒢</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0276.png\"/> <jats:tex-math>{\\underline{\\mathsf{Mon}}(\\omega,\\mathcal{G})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>𝖣</m:mi> <m:mi>𝗌𝗀</m:mi> </m:msub> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0231.png\"/> <jats:tex-math>{\\operatorname{\\mathsf{D_{sg}}}(R)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is dense if and only if <jats:italic>R</jats:italic> (and so <jats:italic>S</jats:italic>) are Gorenstein rings. Particularly, it is proved that the density of the restriction of this functor to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:munder accentunder=\"true\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0277.png\"/> <jats:tex-math>{\\underline{\\mathsf{Mon}}(\\omega,\\mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, guarantees the regularity of the ring <jats:italic>S</jats:italic>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"60 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0317","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let ( S , 𝔫 ) {(S,{\mathfrak{n}})} be a commutative noetherian local ring and let ω 𝔫 {\omega\in{\mathfrak{n}}} be non-zerodivisor. This paper is concerned with the two categories of monomorphisms between finitely generated (Gorenstein) projective S-modules, such that their cokernels are annihilated by ω. It is shown that these categories, which will be denoted by 𝖬𝗈𝗇 ( ω , 𝒫 ) {{\mathsf{Mon}}(\omega,\mathcal{P})} and 𝖬𝗈𝗇 ( ω , 𝒢 ) {{\mathsf{Mon}}(\omega,\mathcal{G})} , are both Frobenius categories with the same projective objects. It is also proved that the stable category 𝖬𝗈𝗇 ¯ ( ω , 𝒫 ) {\underline{\mathsf{Mon}}(\omega,\mathcal{P})} is triangle equivalent to the category of D-branes of type B, 𝖣𝖡 ( ω ) {\mathsf{DB}(\omega)} , which has been introduced by Kontsevich and studied by Orlov. Moreover, it will be observed that the stable categories 𝖬𝗈𝗇 ¯ ( ω , 𝒫 ) {\underline{\mathsf{Mon}}(\omega,\mathcal{P})} and 𝖬𝗈𝗇 ¯ ( ω , 𝒢 ) {\underline{\mathsf{Mon}}(\omega,\mathcal{G})} are closely related to the singularity category of the factor ring R = S / ( ω ) {R=S/({\omega)}} . Precisely, there is a fully faithful triangle functor from the stable category 𝖬𝗈𝗇 ¯ ( ω , 𝒢 ) {\underline{\mathsf{Mon}}(\omega,\mathcal{G})} to 𝖣 𝗌𝗀 ( R ) {\operatorname{\mathsf{D_{sg}}}(R)} , which is dense if and only if R (and so S) are Gorenstein rings. Particularly, it is proved that the density of the restriction of this functor to 𝖬𝗈𝗇 ¯ ( ω , 𝒫 ) {\underline{\mathsf{Mon}}(\omega,\mathcal{P})} , guarantees the regularity of the ring S.
(戈伦斯坦)射影模块间单态的稳定范畴及其应用
让 ( S , 𝔫 ) {(S,{\mathfrak{n}})} 是交换的诺特局部环,让 ω∈ 𝔫 {\omega\in\mathfrak{n}} 是非zerodivisor。本文关注的是有限生成的(戈伦斯坦)射影 S 模块之间的两个单态类别,它们的角核都被ω湮没。研究表明,这些范畴,即 𝖬𝗈𝗇 ( ω , 𝒫 ) {{\mathsf{Mon}}(\omega,\mathcal{P})} 和 𝖬𝗈𝗇 ( ω , 𝒢 ) {{\mathsf{Mon}}(\omega,\mathcal{G})} ,都是弗罗贝尼斯范畴。 都是具有相同投影对象的弗罗贝尼斯范畴。还证明了稳定范畴𝖬𝗈𝗇 ¯ ( ω , 𝒫 ) {\underline\mathsf{Mon}}(\omega、(ω){下划线{mathsf{Mon}}}(\omega, \mathcal{P})}是等价于 B 型 D-rane 范畴的三角形,𝖣𝖡 ( ω ) {下划线{mathsf{DB}}(\omega)},它是由康采维奇引入并由奥洛夫研究的。此外,我们还会发现,稳定范畴 𝖬𝗈𝗇 ¯ ( ω , 𝒫 ) {\underline\mathsf{Mon}}(\omega,\mathcal{P})} 和 𝖬𝗈𝗇 ¯ ( ω 、𝒢 ) {underline{mathsf{Mon}}(\omega,\mathcal{G})} 与因子环 R = S / ( ω ) {R=S/({\omega)}} 的奇点范畴密切相关。确切地说,存在一个来自稳定范畴 𝖬𝗈𝗇 ¯ ( ω , 𝒢 ) {\underline\mathsf{Mon}}(\omega、\𝖣 𝗌𝗀 ( R ) {\operatorname\{mathsf{D_{sg}}}(R)}, 当且仅当 R(以及 S)是戈伦斯坦环时,它才是稠密的。特别是,我们证明了这个函子对𝖬𝗈𝗇 ¯ ( ω , 𝒫 ) {\underline\{mathsf{Mon}}(\omega,\mathcal{P})} 的限制的密度,保证了环的正则性。 保证了环 S 的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信