A note on conjugacy of supplements in soluble periodic linear groups

IF 1 3区 数学 Q1 MATHEMATICS
Marco Trombetti
{"title":"A note on conjugacy of supplements in soluble periodic linear groups","authors":"Marco Trombetti","doi":"10.1515/forum-2024-0102","DOIUrl":null,"url":null,"abstract":"The aim of this short note is to prove that if <jats:italic>G</jats:italic> is a (homomorphic images of a) soluble periodic linear group and <jats:italic>N</jats:italic> is a locally nilpotent normal subgroup of <jats:italic>G</jats:italic> such that <jats:italic>N</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:mi>N</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0102_eq_0133.png\"/> <jats:tex-math>{G/N}</jats:tex-math> </jats:alternatives> </jats:inline-formula> have no isomorphic <jats:italic>G</jats:italic>-chief factors, then two supplements to <jats:italic>N</jats:italic> in <jats:italic>G</jats:italic> are conjugate provided that they have the same intersection with <jats:italic>N</jats:italic>. This result follows from well-known theorems in the theory of Schunck classes (see [A. Ballester-Bolinches and L. M. Ezquerro, On conjugacy of supplements of normal subgroups of finite groups, Bull. Aust. Math. Soc. 89 2014, 2, 293–299]), and it appeared as the main theorem of [C. Parker and P. Rowley, A note on conjugacy of supplements in finite soluble groups, Bull. Lond. Math. Soc. 42 2010, 3, 417–419].","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"199 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2024-0102","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this short note is to prove that if G is a (homomorphic images of a) soluble periodic linear group and N is a locally nilpotent normal subgroup of G such that N and G / N {G/N} have no isomorphic G-chief factors, then two supplements to N in G are conjugate provided that they have the same intersection with N. This result follows from well-known theorems in the theory of Schunck classes (see [A. Ballester-Bolinches and L. M. Ezquerro, On conjugacy of supplements of normal subgroups of finite groups, Bull. Aust. Math. Soc. 89 2014, 2, 293–299]), and it appeared as the main theorem of [C. Parker and P. Rowley, A note on conjugacy of supplements in finite soluble groups, Bull. Lond. Math. Soc. 42 2010, 3, 417–419].
关于可溶性周期线性群中的共轭补充物的说明
本短文旨在证明,如果 G 是可溶周期线性群的(同态图像),而 N 是 G 的局部零potent 正则子群,使得 N 和 G / N {G/N} 没有同构的 G 主因,那么 G 中 N 的两个补充群是共轭的,条件是它们与 N 有相同的交集。这一结果源于 Schunck 类理论中的著名定理(见 [A. Ballester-Bolinches and L. M. Ezquerro, On conjugacy of supplements to N in G, Bull.Ballester-Bolinches and L. M. Ezquerro, On conjugacy of supplements of normal subgroups of finite groups, Bull. Aust.Aust.Math.89 2014, 2, 293-299]),并作为主定理出现在[C.Parker and P. Rowley, A note on conjugacy of supplements in finite soluble groups, Bull.Lond.Math.42 2010, 3, 417-419].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信