代数上的分级和分级线性映射

IF 1 3区 数学 Q1 MATHEMATICS
Antonio Ioppolo, Fabrizio Martino
{"title":"代数上的分级和分级线性映射","authors":"Antonio Ioppolo, Fabrizio Martino","doi":"10.1515/forum-2024-0098","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>A</jats:italic> be a superalgebra over a field <jats:italic>F</jats:italic> of characteristic zero. We prove tight relations between graded automorphisms, pseudoautomorphisms, superautomorphisms and <jats:italic>K</jats:italic>-gradings on <jats:italic>A</jats:italic>, where <jats:italic>K</jats:italic> is the Klein group. Moreover, we investigate the consequences of such connections within the theory of polynomial identities. In the second part we focus on the superalgebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>U</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>T</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0098_eq_0217.png\"/> <jats:tex-math>{UT_{n}(F)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0098_eq_0407.png\"/> <jats:tex-math>{n\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> upper triangular matrices by completely classifying the graded-pseudo-super automorphism that one can define on it. Finally, we compute the ideals of identities of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>U</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>T</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0098_eq_0217.png\"/> <jats:tex-math>{UT_{n}(F)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> endowed with a graded or a pseudo automorphism, for any <jats:italic>n</jats:italic>, and the ideals of identities with superautomorphism in the cases <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0098_eq_0403.png\"/> <jats:tex-math>{n=2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0098_eq_0404.png\"/> <jats:tex-math>{n=3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"40 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradings and graded linear maps on algebras\",\"authors\":\"Antonio Ioppolo, Fabrizio Martino\",\"doi\":\"10.1515/forum-2024-0098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>A</jats:italic> be a superalgebra over a field <jats:italic>F</jats:italic> of characteristic zero. We prove tight relations between graded automorphisms, pseudoautomorphisms, superautomorphisms and <jats:italic>K</jats:italic>-gradings on <jats:italic>A</jats:italic>, where <jats:italic>K</jats:italic> is the Klein group. Moreover, we investigate the consequences of such connections within the theory of polynomial identities. In the second part we focus on the superalgebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>U</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>T</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0098_eq_0217.png\\\"/> <jats:tex-math>{UT_{n}(F)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0098_eq_0407.png\\\"/> <jats:tex-math>{n\\\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> upper triangular matrices by completely classifying the graded-pseudo-super automorphism that one can define on it. Finally, we compute the ideals of identities of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>U</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>T</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0098_eq_0217.png\\\"/> <jats:tex-math>{UT_{n}(F)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> endowed with a graded or a pseudo automorphism, for any <jats:italic>n</jats:italic>, and the ideals of identities with superautomorphism in the cases <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0098_eq_0403.png\\\"/> <jats:tex-math>{n=2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0098_eq_0404.png\\\"/> <jats:tex-math>{n=3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2024-0098\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2024-0098","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 A 是特征为零的域 F 上的超代数。我们证明了 A 上的级数自变形、伪自变形、超自变形和 K 级数(其中 K 是克莱因群)之间的紧密关系。此外,我们还研究了这种联系在多项式同构理论中的后果。在第二部分中,我们将重点放在 n × n {n\times n} 上三角矩阵的超代数 U T n ( F ) {UT_{n}(F)} 上,对可以在其上定义的分级伪超自变量进行完全分类。最后,我们计算了任意 n 的 U T n ( F ) {UT_{n}(F)} 带有分级或伪自形性的同调理想,以及 n = 2 {n=2} 和 n = 3 {n=3} 两种情况下带超同形性的同调理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradings and graded linear maps on algebras
Let A be a superalgebra over a field F of characteristic zero. We prove tight relations between graded automorphisms, pseudoautomorphisms, superautomorphisms and K-gradings on A, where K is the Klein group. Moreover, we investigate the consequences of such connections within the theory of polynomial identities. In the second part we focus on the superalgebra U T n ( F ) {UT_{n}(F)} of n × n {n\times n} upper triangular matrices by completely classifying the graded-pseudo-super automorphism that one can define on it. Finally, we compute the ideals of identities of U T n ( F ) {UT_{n}(F)} endowed with a graded or a pseudo automorphism, for any n, and the ideals of identities with superautomorphism in the cases n = 2 {n=2} and n = 3 {n=3} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信