Any Sasakian structure is approximated by embeddings into spheres

IF 1 3区 数学 Q1 MATHEMATICS
Andrea Loi, Giovanni Placini
{"title":"Any Sasakian structure is approximated by embeddings into spheres","authors":"Andrea Loi, Giovanni Placini","doi":"10.1515/forum-2023-0364","DOIUrl":null,"url":null,"abstract":"We show that, for any given <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>q</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0364_eq_0372.png\"/> <jats:tex-math>{q\\geq 0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, any Sasakian structure on a closed manifold <jats:italic>M</jats:italic> is approximated in the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mi>q</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0364_eq_0146.png\"/> <jats:tex-math>{C^{{q}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-norm by structures induced by CR embeddings into weighted Sasakian spheres. In order to obtain this result, we also strengthen the approximation of an orbifold Kähler form by projectively induced ones given in [J. Ross and R. Thomas, Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics, J. Differential Geom. 88 2011, 1, 109–159] in the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mn>0</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0364_eq_0138.png\"/> <jats:tex-math>{C^{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-norm to a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mi>q</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0364_eq_0146.png\"/> <jats:tex-math>{C^{{q}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-approximation.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0364","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that, for any given q 0 {q\geq 0} , any Sasakian structure on a closed manifold M is approximated in the C q {C^{{q}}} -norm by structures induced by CR embeddings into weighted Sasakian spheres. In order to obtain this result, we also strengthen the approximation of an orbifold Kähler form by projectively induced ones given in [J. Ross and R. Thomas, Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics, J. Differential Geom. 88 2011, 1, 109–159] in the C 0 {C^{0}} -norm to a C q {C^{{q}}} -approximation.
任何萨萨基结构都可以通过嵌入球面来近似
我们证明,对于任何给定的 q ≥ 0 {q\geq 0},闭流形 M 上的任何萨萨基结构在 C q {C^{{q}} 中都是近似的。} -的结构近似。为了得到这个结果,我们还加强了 [J. Ross and R. Thomas, Weighted Sasakian spheres] 中给出的用投影诱导的球面凯勒形式对球面凯勒形式的逼近。Ross and R. Thomas, Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics, J. Differential Geom.88 2011, 1, 109-159] 中的 C 0 {C^{0}} -norm。 -C q {C^{{q}} 的近似。} -的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信