黎曼zeta函数的离散Ω结果

IF 1 3区 数学 Q1 MATHEMATICS
Paolo Minelli, Athanasios Sourmelidis
{"title":"黎曼zeta函数的离散Ω结果","authors":"Paolo Minelli, Athanasios Sourmelidis","doi":"10.1515/forum-2023-0324","DOIUrl":null,"url":null,"abstract":"We study lower bounds for the Riemann zeta function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ζ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>s</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0324_eq_0200.png\"/> <jats:tex-math>{\\zeta(s)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> along vertical arithmetic progressions in the right-half of the critical strip. We show that the lower bounds obtained in the discrete case coincide, up to the constants in the exponential, with the ones known for the continuous case, that is when the imaginary part of <jats:italic>s</jats:italic> ranges on a given interval. Our methods are based on a discretization of the resonance method for estimating extremal values of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ζ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>s</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0324_eq_0200.png\"/> <jats:tex-math>{\\zeta(s)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Ω-results for the Riemann zeta function\",\"authors\":\"Paolo Minelli, Athanasios Sourmelidis\",\"doi\":\"10.1515/forum-2023-0324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study lower bounds for the Riemann zeta function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>ζ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>s</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0324_eq_0200.png\\\"/> <jats:tex-math>{\\\\zeta(s)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> along vertical arithmetic progressions in the right-half of the critical strip. We show that the lower bounds obtained in the discrete case coincide, up to the constants in the exponential, with the ones known for the continuous case, that is when the imaginary part of <jats:italic>s</jats:italic> ranges on a given interval. Our methods are based on a discretization of the resonance method for estimating extremal values of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>ζ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>s</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0324_eq_0200.png\\\"/> <jats:tex-math>{\\\\zeta(s)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0324\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0324","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了黎曼zeta函数ζ ( s ) {\zeta(s)} 沿临界带右半部垂直算术级数的下界。我们证明,当 s 的虚部在给定区间内时,离散情况下获得的下界与连续情况下已知的下界重合,直至指数中的常数。我们的方法基于共振法的离散化,用于估计 ζ ( s ) {\zeta(s)} 的极值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Ω-results for the Riemann zeta function
We study lower bounds for the Riemann zeta function ζ ( s ) {\zeta(s)} along vertical arithmetic progressions in the right-half of the critical strip. We show that the lower bounds obtained in the discrete case coincide, up to the constants in the exponential, with the ones known for the continuous case, that is when the imaginary part of s ranges on a given interval. Our methods are based on a discretization of the resonance method for estimating extremal values of ζ ( s ) {\zeta(s)} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信