Abdolnaser Bahlekeh, Fahimeh Sadat Fotouhi, Mohammad Amin Hamlehdari, Shokrollah Salarian
求助PDF
{"title":"(戈伦斯坦)射影模块间单态的稳定范畴及其应用","authors":"Abdolnaser Bahlekeh, Fahimeh Sadat Fotouhi, Mohammad Amin Hamlehdari, Shokrollah Salarian","doi":"10.1515/forum-2023-0317","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>S</m:mi> <m:mo>,</m:mo> <m:mi>𝔫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0072.png\"/> <jats:tex-math>{(S,{\\mathfrak{n}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a commutative noetherian local ring and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ω</m:mi> <m:mo>∈</m:mo> <m:mi>𝔫</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0207.png\"/> <jats:tex-math>{\\omega\\in{\\mathfrak{n}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be non-zerodivisor. This paper is concerned with the two categories of monomorphisms between finitely generated (Gorenstein) projective <jats:italic>S</jats:italic>-modules, such that their cokernels are annihilated by ω. It is shown that these categories, which will be denoted by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0342.png\"/> <jats:tex-math>{{\\mathsf{Mon}}(\\omega,\\mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒢</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0341.png\"/> <jats:tex-math>{{\\mathsf{Mon}}(\\omega,\\mathcal{G})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, are both Frobenius categories with the same projective objects. It is also proved that the stable category <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:munder accentunder=\"true\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0277.png\"/> <jats:tex-math>{\\underline{\\mathsf{Mon}}(\\omega,\\mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is triangle equivalent to the category of D-branes of type B, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝖣𝖡</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0181.png\"/> <jats:tex-math>{\\mathsf{DB}(\\omega)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which has been introduced by Kontsevich and studied by Orlov. Moreover, it will be observed that the stable categories <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:munder accentunder=\"true\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0277.png\"/> <jats:tex-math>{\\underline{\\mathsf{Mon}}(\\omega,\\mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:munder accentunder=\"true\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒢</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0276.png\"/> <jats:tex-math>{\\underline{\\mathsf{Mon}}(\\omega,\\mathcal{G})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are closely related to the singularity category of the factor ring <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>R</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>S</m:mi> <m:mo>/</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0136.png\"/> <jats:tex-math>{R=S/({\\omega)}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Precisely, there is a fully faithful triangle functor from the stable category <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:munder accentunder=\"true\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒢</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0276.png\"/> <jats:tex-math>{\\underline{\\mathsf{Mon}}(\\omega,\\mathcal{G})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>𝖣</m:mi> <m:mi>𝗌𝗀</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0231.png\"/> <jats:tex-math>{\\operatorname{\\mathsf{D_{sg}}}(R)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is dense if and only if <jats:italic>R</jats:italic> (and so <jats:italic>S</jats:italic>) are Gorenstein rings. Particularly, it is proved that the density of the restriction of this functor to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:munder accentunder=\"true\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"script\">𝒫</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0317_eq_0277.png\"/> <jats:tex-math>{\\underline{\\mathsf{Mon}}(\\omega,\\mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, guarantees the regularity of the ring <jats:italic>S</jats:italic>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"60 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The stable category of monomorphisms between (Gorenstein) projective modules with applications\",\"authors\":\"Abdolnaser Bahlekeh, Fahimeh Sadat Fotouhi, Mohammad Amin Hamlehdari, Shokrollah Salarian\",\"doi\":\"10.1515/forum-2023-0317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>S</m:mi> <m:mo>,</m:mo> <m:mi>𝔫</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0317_eq_0072.png\\\"/> <jats:tex-math>{(S,{\\\\mathfrak{n}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a commutative noetherian local ring and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>ω</m:mi> <m:mo>∈</m:mo> <m:mi>𝔫</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0317_eq_0207.png\\\"/> <jats:tex-math>{\\\\omega\\\\in{\\\\mathfrak{n}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be non-zerodivisor. This paper is concerned with the two categories of monomorphisms between finitely generated (Gorenstein) projective <jats:italic>S</jats:italic>-modules, such that their cokernels are annihilated by ω. It is shown that these categories, which will be denoted by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"script\\\">𝒫</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0317_eq_0342.png\\\"/> <jats:tex-math>{{\\\\mathsf{Mon}}(\\\\omega,\\\\mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"script\\\">𝒢</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0317_eq_0341.png\\\"/> <jats:tex-math>{{\\\\mathsf{Mon}}(\\\\omega,\\\\mathcal{G})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, are both Frobenius categories with the same projective objects. It is also proved that the stable category <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:munder accentunder=\\\"true\\\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"script\\\">𝒫</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0317_eq_0277.png\\\"/> <jats:tex-math>{\\\\underline{\\\\mathsf{Mon}}(\\\\omega,\\\\mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is triangle equivalent to the category of D-branes of type B, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>𝖣𝖡</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ω</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0317_eq_0181.png\\\"/> <jats:tex-math>{\\\\mathsf{DB}(\\\\omega)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which has been introduced by Kontsevich and studied by Orlov. Moreover, it will be observed that the stable categories <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:munder accentunder=\\\"true\\\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"script\\\">𝒫</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0317_eq_0277.png\\\"/> <jats:tex-math>{\\\\underline{\\\\mathsf{Mon}}(\\\\omega,\\\\mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:munder accentunder=\\\"true\\\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"script\\\">𝒢</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0317_eq_0276.png\\\"/> <jats:tex-math>{\\\\underline{\\\\mathsf{Mon}}(\\\\omega,\\\\mathcal{G})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are closely related to the singularity category of the factor ring <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>R</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>S</m:mi> <m:mo>/</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ω</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0317_eq_0136.png\\\"/> <jats:tex-math>{R=S/({\\\\omega)}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Precisely, there is a fully faithful triangle functor from the stable category <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:munder accentunder=\\\"true\\\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"script\\\">𝒢</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0317_eq_0276.png\\\"/> <jats:tex-math>{\\\\underline{\\\\mathsf{Mon}}(\\\\omega,\\\\mathcal{G})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>𝖣</m:mi> <m:mi>𝗌𝗀</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0317_eq_0231.png\\\"/> <jats:tex-math>{\\\\operatorname{\\\\mathsf{D_{sg}}}(R)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is dense if and only if <jats:italic>R</jats:italic> (and so <jats:italic>S</jats:italic>) are Gorenstein rings. Particularly, it is proved that the density of the restriction of this functor to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:munder accentunder=\\\"true\\\"> <m:mi>𝖬𝗈𝗇</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ω</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\\\"script\\\">𝒫</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0317_eq_0277.png\\\"/> <jats:tex-math>{\\\\underline{\\\\mathsf{Mon}}(\\\\omega,\\\\mathcal{P})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, guarantees the regularity of the ring <jats:italic>S</jats:italic>.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0317\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0317","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
让 ( S , 𝔫 ) {(S,{\mathfrak{n}})} 是交换的诺特局部环,让 ω∈ 𝔫 {\omega\in\mathfrak{n}} 是非zerodivisor。本文关注的是有限生成的(戈伦斯坦)射影 S 模块之间的两个单态类别,它们的角核都被ω湮没。研究表明,这些范畴,即 𝖬𝗈𝗇 ( ω , 𝒫 ) {{\mathsf{Mon}}(\omega,\mathcal{P})} 和 𝖬𝗈𝗇 ( ω , 𝒢 ) {{\mathsf{Mon}}(\omega,\mathcal{G})} ,都是弗罗贝尼斯范畴。 都是具有相同投影对象的弗罗贝尼斯范畴。还证明了稳定范畴𝖬𝗈𝗇 ¯ ( ω , 𝒫 ) {\underline\mathsf{Mon}}(\omega、(ω){下划线{mathsf{Mon}}}(\omega, \mathcal{P})}是等价于 B 型 D-rane 范畴的三角形,𝖣𝖡 ( ω ) {下划线{mathsf{DB}}(\omega)},它是由康采维奇引入并由奥洛夫研究的。此外,我们还会发现,稳定范畴 𝖬𝗈𝗇 ¯ ( ω , 𝒫 ) {\underline\mathsf{Mon}}(\omega,\mathcal{P})} 和 𝖬𝗈𝗇 ¯ ( ω 、𝒢 ) {underline{mathsf{Mon}}(\omega,\mathcal{G})} 与因子环 R = S / ( ω ) {R=S/({\omega)}} 的奇点范畴密切相关。确切地说,存在一个来自稳定范畴 𝖬𝗈𝗇 ¯ ( ω , 𝒢 ) {\underline\mathsf{Mon}}(\omega、\𝖣 𝗌𝗀 ( R ) {\operatorname\{mathsf{D_{sg}}}(R)}, 当且仅当 R(以及 S)是戈伦斯坦环时,它才是稠密的。特别是,我们证明了这个函子对𝖬𝗈𝗇 ¯ ( ω , 𝒫 ) {\underline\{mathsf{Mon}}(\omega,\mathcal{P})} 的限制的密度,保证了环的正则性。 保证了环 S 的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The stable category of monomorphisms between (Gorenstein) projective modules with applications
Let ( S , 𝔫 ) {(S,{\mathfrak{n}})} be a commutative noetherian local ring and let ω ∈ 𝔫 {\omega\in{\mathfrak{n}}} be non-zerodivisor. This paper is concerned with the two categories of monomorphisms between finitely generated (Gorenstein) projective S -modules, such that their cokernels are annihilated by ω. It is shown that these categories, which will be denoted by 𝖬𝗈𝗇 ( ω , 𝒫 ) {{\mathsf{Mon}}(\omega,\mathcal{P})} and 𝖬𝗈𝗇 ( ω , 𝒢 ) {{\mathsf{Mon}}(\omega,\mathcal{G})} , are both Frobenius categories with the same projective objects. It is also proved that the stable category 𝖬𝗈𝗇 ¯ ( ω , 𝒫 ) {\underline{\mathsf{Mon}}(\omega,\mathcal{P})} is triangle equivalent to the category of D-branes of type B, 𝖣𝖡 ( ω ) {\mathsf{DB}(\omega)} , which has been introduced by Kontsevich and studied by Orlov. Moreover, it will be observed that the stable categories 𝖬𝗈𝗇 ¯ ( ω , 𝒫 ) {\underline{\mathsf{Mon}}(\omega,\mathcal{P})} and 𝖬𝗈𝗇 ¯ ( ω , 𝒢 ) {\underline{\mathsf{Mon}}(\omega,\mathcal{G})} are closely related to the singularity category of the factor ring R = S / ( ω ) {R=S/({\omega)}} . Precisely, there is a fully faithful triangle functor from the stable category 𝖬𝗈𝗇 ¯ ( ω , 𝒢 ) {\underline{\mathsf{Mon}}(\omega,\mathcal{G})} to 𝖣 𝗌𝗀 ( R ) {\operatorname{\mathsf{D_{sg}}}(R)} , which is dense if and only if R (and so S ) are Gorenstein rings. Particularly, it is proved that the density of the restriction of this functor to 𝖬𝗈𝗇 ¯ ( ω , 𝒫 ) {\underline{\mathsf{Mon}}(\omega,\mathcal{P})} , guarantees the regularity of the ring S .