{"title":"Cross-subject mental workload recognition using bi-classifier domain adversarial learning.","authors":"Yueying Zhou, Pengpai Wang, Peiliang Gong, Peng Wan, Xuyun Wen, Daoqiang Zhang","doi":"10.1007/s11571-024-10215-9","DOIUrl":"10.1007/s11571-024-10215-9","url":null,"abstract":"<p><p>To deploy Electroencephalogram (EEG) based Mental Workload Recognition (MWR) systems in the real world, it is crucial to develop general models that can be applied across subjects. Previous studies have utilized domain adaptation to mitigate inter-subject discrepancies in EEG data distributions. However, they have focused on reducing global domain discrepancy, while neglecting local workload-categorical domain divergence. This degrades the workload-discriminating ability of subject-invariant features. To deal with this problem, we propose a novel joint category-wise and domain-wise alignment Domain Adaptation (cdaDA) algorithm, using bi-classifier learning and domain discriminative adversarial learning. The bi-classifier learning approach is adopted to address the similarities and differences between categories, helping to align EEG data within the same mental workload categories. Additionally, the domain discriminative adversarial learning technique is adopted to consider global domain information by minimizing global domain discrepancy. By integrating both local category information and global domain information, the cdaDA model performs a coarse-to-fine alignment and achieves promising cross-subject MWR results.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"16"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-02-05DOI: 10.1007/s11571-025-10227-z
Zhihui Wang, Xindan Wei, Lixia Duan
{"title":"Regulatory mechanism of inhibitory interneurons with time-delay on epileptic seizures under sinusoidal sensory stimulation.","authors":"Zhihui Wang, Xindan Wei, Lixia Duan","doi":"10.1007/s11571-025-10227-z","DOIUrl":"https://doi.org/10.1007/s11571-025-10227-z","url":null,"abstract":"<p><p>Epilepsy is a neurological disorder in which complex electrophysiological processes are closely linked to inherent nonlinear kinetic properties. This study investigates the effects of sinusoidal sensory stimulation bias and time-delay on the dynamics of epileptic seizures within a corticothalamic neural network model. The results indicate that an increase in sensory stimulation bias can prematurely terminate seizures, and high-frequency stimulation can induce a phenomenon of frequency resonance. Meanwhile, discharge states transitions are associated with the emergence of bifurcation points. Time-delay exerts a significant regulatory influence on pathways with delay embedding (I2-PY), whereas its impact on pathways without delay embedding (I1-I1 and thalamic relay nucleus (TC)-I2) is negligible. Under sinusoidal sensory stimulation, the responses of three pathways (I1-I1, I1-PY, and I2-PY) associated with inhibitory interneurons reveal that the inhibitory properties of interneurons can suppress seizures; however, an excessively strong inhibitory effect may also precipitate seizures and facilitate state transitions. These findings contribute to a deeper understanding of seizure dynamics and may guide future research in the transmission and evolution of seizures.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"37"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-09DOI: 10.1007/s11571-024-10201-1
Dániel Hegedűs, Vince Grolmusz
{"title":"The length and the width of the human brain circuit connections are strongly correlated.","authors":"Dániel Hegedűs, Vince Grolmusz","doi":"10.1007/s11571-024-10201-1","DOIUrl":"10.1007/s11571-024-10201-1","url":null,"abstract":"<p><p>The correlations of several fundamental properties of human brain connections are investigated in a consensus connectome, constructed from 1064 braingraphs, each on 1015 vertices, corresponding to 1015 anatomical brain areas. The properties examined include the edge length, the fiber count, or edge width, meaning the number of discovered axon bundles forming the edge and the occurrence number of the edge, meaning the number of individual braingraphs where the edge exists. By using our previously published robust braingraphs at https://braingraph.org, we have prepared a single consensus graph from the data and compared the statistical similarity of the edge occurrence numbers, edge lengths, and fiber counts of the edges. We have found a strong positive Spearman correlation between the edge occurrence numbers and the fiber count numbers, showing that statistically, the most frequent cerebral connections have the largest widths, i.e., the fiber count. We have found a negative Spearman correlation between the fiber lengths and fiber counts, showing that, typically, the shortest edges are the widest or strongest by their fiber counts. We have also found a negative Spearman correlation between the occurrence numbers and the edge lengths: it shows that typically, the long edges are infrequent, and the frequent edges are short.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"21"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-09DOI: 10.1007/s11571-024-10192-z
Chengxian Gu, Xuanyu Jin, Li Zhu, Hangjie Yi, Honggang Liu, Xinyu Yang, Fabio Babiloni, Wanzeng Kong
{"title":"Cross-session SSVEP brainprint recognition using attentive multi-sub-band depth identity embedding learning network.","authors":"Chengxian Gu, Xuanyu Jin, Li Zhu, Hangjie Yi, Honggang Liu, Xinyu Yang, Fabio Babiloni, Wanzeng Kong","doi":"10.1007/s11571-024-10192-z","DOIUrl":"10.1007/s11571-024-10192-z","url":null,"abstract":"<p><p>Brainprint recognition technology, regarded as a promising biometric technology, encounters challenges stemming from the time-varied, low signal-to-noise ratio of brain signals, such as electroencephalogram (EEG). Steady-state visual evoked potentials (SSVEP) exhibit high signal-to-noise ratio and frequency locking, making them a promising paradigm for brainprint recognition. Consequently, the extraction of time-invariant identity information from SSVEP EEG signals is essential. In this paper, we propose an Attentive Multi-sub-band Depth Identity Embedding Learning Network for stable cross-session SSVEP brainprint recognition. To address the issue of low recognition accuracy across sessions, we introduce the Sub-band Attentive Frequency mechanism, which integrates the frequency-domain relevant characteristics of the SSVEP paradigm and focuses on exploring depth-frequency identity embedding information. Also, we employ Attentive Statistic Pooling to enhance the stability of frequency domain feature distributions across sessions. Extensive experimentation and validation were conducted on two multi-session SSVEP benchmark datasets. The experimental results show that our approach outperforms other state-of-art models on 2-second samples across sessions and has the potential to serve as a benchmark in multi-subject biometric recognition systems.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"15"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-09DOI: 10.1007/s11571-024-10200-2
Dongye Zhao, Bailu Si
{"title":"Formation of cognitive maps in large-scale environments by sensorimotor integration.","authors":"Dongye Zhao, Bailu Si","doi":"10.1007/s11571-024-10200-2","DOIUrl":"10.1007/s11571-024-10200-2","url":null,"abstract":"<p><p>Hippocampus in the mammalian brain supports navigation by building a cognitive map of the environment. However, only a few studies have investigated cognitive maps in large-scale arenas. To reveal the computational mechanisms underlying the formation of cognitive maps in large-scale environments, we propose a neural network model of the entorhinal-hippocampal neural circuit that integrates both spatial and non-spatial information. Spatial information is relayed from the grid units in medial entorhinal cortex (MEC) by integrating multimodal sensory-motor signals. Non-spatial, such as object, information is imparted from the visual units in lateral entorhinal cortex (LEC) by encoding visual scenes through a deep neural network. The synaptic weights from the grid units and the visual units to the place units in the hippocampus are learned by a competitive learning rule. We simulated the model in a large box maze. The place units in the model form irregularly-spaced multiple fields across the environment. When the strength of visual inputs is dominant, the responses of place units become conjunctive and egocentric. These results point to the key role of the hippocampus in balancing spatial and non-spatial information relayed via LEC and MEC.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"19"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of directional leads, stimulation patterns and programming strategies for deep brain stimulation.","authors":"Yijie Zhou, Yibo Song, Xizi Song, Feng He, Minpeng Xu, Dong Ming","doi":"10.1007/s11571-024-10210-0","DOIUrl":"10.1007/s11571-024-10210-0","url":null,"abstract":"<p><p>Deep brain stimulation (DBS) is a well-established treatment for both neurological and psychiatric disorders. Directional DBS has the potential to minimize stimulation-induced side effects and maximize clinical benefits. Many new directional leads, stimulation patterns and programming strategies have been developed in recent years. Therefore, it is necessary to review new progress in directional DBS. This paper summarizes progress for directional DBS from the perspective of directional DBS leads, stimulation patterns, and programming strategies which are three key elements of DBS systems. Directional DBS leads are reviewed in electrode design and volume of tissue activated visualization strategies. Stimulation patterns are reviewed in stimulation parameters and advances in stimulation patterns. Programming strategies are reviewed in computational modeling, monopolar review, direction indicators and adaptive DBS. This review will provide a comprehensive overview of primary directional DBS leads, stimulation patterns and programming strategies, making it helpful for those who are developing DBS systems.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"33"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-23DOI: 10.1007/s11571-024-10187-w
R Mathumitha, A Maryposonia
{"title":"Emotion analysis of EEG signals using proximity-conserving auto-encoder (PCAE) and ensemble techniques.","authors":"R Mathumitha, A Maryposonia","doi":"10.1007/s11571-024-10187-w","DOIUrl":"10.1007/s11571-024-10187-w","url":null,"abstract":"<p><p>Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders. Recently, several deep learning (DL) based approaches have been developed for accurate emotion recognition tasks. Yet, previous works often struggle with poor recognition accuracy, high dimensionality, and high computational time. This research work designed an innovative framework named Proximity-conserving Auto-encoder (PCAE) for accurate emotion recognition based on EEG signals and resolves challenges faced by traditional emotion analysis techniques. For preserving local structures among the EEG data and reducing dimensionality, the proposed PCAE approach is introduced and it captures the essential features related to emotional states. The EEG data are collected from the EEG Brainwave dataset using a Muse EEG headband and applying preprocessing steps to enhance signal quality. The proposed PCAE model incorporates multiple convolution and deconvolution layers for encoding and decoding and deploys a Local Proximity Preservation Layer for preserving local correlations in the latent space. In addition, it develops a Proximity-conserving Squeeze-and-Excitation Auto-encoder (PC-SEAE) model to further improve the feature extraction ability of the PCAE technique. The proposed PCAE technique utilizes Maximum Mean Discrepancy (MMD) regularization to decrease the distribution discrepancy between input data and the extracted features. Moreover, the proposed model designs an ensemble model for emotion categorization that incorporates a one-versus-support vector machine (SVM), random forest (RF), and Long Short-Term Memory (LSTM) networks by utilizing each classifier's strength to enhance classification accuracy. Further, the performance of the proposed PCAE model is evaluated using diverse performance measures and the model attains outstanding results including accuracy, precision, and Kappa coefficient of 98.87%, 98.69%, and 0.983 respectively. This experimental validation proves that the proposed PCAE framework provides a significant contribution to accurate emotion recognition and classification systems.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"32"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-02-06DOI: 10.1007/s11571-025-10225-1
Peter Beim Graben
{"title":"Pragmatic information of aesthetic appraisal.","authors":"Peter Beim Graben","doi":"10.1007/s11571-025-10225-1","DOIUrl":"https://doi.org/10.1007/s11571-025-10225-1","url":null,"abstract":"<p><p>A phenomenological model for aesthetic appraisal is proposed in terms of pragmatic information for a dynamic update semantics over belief states of an aesthetic appreciator. The model qualitatively correlates with aesthetic pleasure ratings in an experimental study on cadential effects in Western tonal music, conducted by Cheung et al. (Curr Biol 29(23):4084-4092.e4, 2019). Finally, related computational and neurodynamical accounts are discussed.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"39"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-09DOI: 10.1007/s11571-024-10213-x
Junling Wang, Ludan Zhang, Sitong Chen, Huiqin Xue, Minghao Du, Yunuo Xu, Shuang Liu, Dong Ming
{"title":"Individuals with high autistic traits exhibit altered interhemispheric brain functional connectivity patterns.","authors":"Junling Wang, Ludan Zhang, Sitong Chen, Huiqin Xue, Minghao Du, Yunuo Xu, Shuang Liu, Dong Ming","doi":"10.1007/s11571-024-10213-x","DOIUrl":"10.1007/s11571-024-10213-x","url":null,"abstract":"<p><p>Individuals with high autistic traits (AT) encounter challenges in social interaction, similar to autistic persons. Precise screening and focused interventions positively contribute to improving this situation. Functional connectivity analyses can measure information transmission and integration between brain regions, providing neurophysiological insights into these challenges. This study aimed to investigate the patterns of brain networks in high AT individuals to offer theoretical support for screening and intervention decisions. EEG data were collected during a 4-min resting state session with eyes open and closed from 48 participants. Using the Autism Spectrum Quotient (AQ) scale, participants were categorized into the high AT group (HAT, n = 15) and low AT groups (LAT, n = 15). We computed the interhemispheric and intrahemispheric alpha coherence in two groups. The correlation between physiological indices and AQ scores was also examined. Results revealed that HAT exhibited significantly lower alpha coherence in the homologous hemispheres of the occipital cortex compared to LAT during the eyes-closed resting state. Additionally, significant negative correlations were observed between the degree of AT (AQ scores) and the alpha coherence in the occipital cortex, as well as in the right frontal and left occipital regions. The findings indicated that high AT individuals exhibit decreased connectivity in the occipital region, potentially resulting in diminished ability to process social information from visual inputs. Our discovery contributes to a deeper comprehension of the neural underpinnings of social challenges in high AT individuals, providing neurophysiological signatures for screening and intervention strategies for this population.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"9"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On hyper-parameter selection for guaranteed convergence of RMSProp.","authors":"Jinlan Liu, Dongpo Xu, Huisheng Zhang, Danilo Mandic","doi":"10.1007/s11571-022-09845-8","DOIUrl":"10.1007/s11571-022-09845-8","url":null,"abstract":"<p><p>RMSProp is one of the most popular stochastic optimization algorithms in deep learning applications. However, recent work has pointed out that this method may not converge to the optimal solution even in simple convex settings. To this end, we propose a time-varying version of RMSProp to fix the non-convergence issues. Specifically, the hyperparameter, <math><msub><mi>β</mi> <mi>t</mi></msub> </math> , is considered as a time-varying sequence rather than a fine-tuned constant. We also provide a rigorous proof that the RMSProp can converge to critical points even for smooth and non-convex objectives, with a convergence rate of order <math><mrow><mi>O</mi> <mo>(</mo> <mo>log</mo> <mi>T</mi> <mo>/</mo> <msqrt><mi>T</mi></msqrt> <mo>)</mo></mrow> </math> . This provides a new understanding of RMSProp divergence, a common issue in practical applications. Finally, numerical experiments show that time-varying RMSProp exhibits advantages over standard RMSProp on benchmark datasets and support the theoretical results.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":" ","pages":"3227-3237"},"PeriodicalIF":3.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41393024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}