Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-24DOI: 10.1007/s11571-025-10220-6
Long Chen, Yihao Hu, Zhongpeng Wang, Lei Zhang, Chuxiang Jian, Shengcui Cheng, Dong Ming
{"title":"Effects of transcutaneous auricular vagus nerve stimulation (taVNS) on motor planning: a multimodal signal study.","authors":"Long Chen, Yihao Hu, Zhongpeng Wang, Lei Zhang, Chuxiang Jian, Shengcui Cheng, Dong Ming","doi":"10.1007/s11571-025-10220-6","DOIUrl":"10.1007/s11571-025-10220-6","url":null,"abstract":"<p><p>Motor planning plays a pivotal role in daily life. Transcutaneous auricular vagus nerve stimulation (taVNS) has been demonstrated to enhance decision-making efficiency, illustrating its potential use in cognitive modulation. However, current research primarily focuses on behavioral and single-modal electrophysiological signal, such as electroencephalography (EEG) and electrocardiography (ECG). To investigate the effect of taVNS on motor planning, a total of 21 subjects were recruited for this study and were divided into two groups: active group (n = 10) and sham group (n = 11). Each subject was required to be involved in a single-blind, sham-controlled, between-subject end-state comfort (ESC) experiment. The study compared behavioral indicators and electrophysiological features before and following taVNS. The results indicated a notable reduction in reaction time and an appreciable increase in the proportion of end-state comfort among the participants following taVNS, accompanied by notable alterations in motor-related cortical potential (MRCP) amplitude, low-frequency power of HRV (LF), and cortico-cardiac coherence, particularly in the parietal and occipital regions. These findings show that taVNS may impact the brain and heart, potentially enhancing their interaction, and improve participants' ability of motor planning.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"35"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759740/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-level cognitive state classification of learners using complex brain networks and interpretable machine learning.","authors":"Xiuling He, Yue Li, Xiong Xiao, Yingting Li, Jing Fang, Ruijie Zhou","doi":"10.1007/s11571-024-10203-z","DOIUrl":"https://doi.org/10.1007/s11571-024-10203-z","url":null,"abstract":"<p><p>Identifying the cognitive state can help educators understand the evolving thought processes of learners, and it is important in promoting the development of higher-order thinking skills (HOTS). Cognitive neuroscience research identifies cognitive states by designing experimental tasks and recording electroencephalography (EEG) signals during task performance. However, most of the previous studies primarily concentrated on extracting features from individual channels in single-type tasks, ignoring the interconnection across channels. In this study, three learning activities (i.e., video watching activity, keyword extracting activity, and essay creating activity) were designed based on a revised Bloom's taxonomy and the Interactive-Constructive-Active-Passive framework and used with 31 college students. The EEG signals were recorded when they were engaged in these activities. First, whole-brain network temporal dynamics were characterized by EEG microstate sequence analysis. Such dynamic changes rely on learning activity and corresponding functional brain systems. Subsequently, phase locking value was used to construct synchrony-based functional brain networks. The network characteristics were extracted to be inputted into different machine learning classifiers: Support Vector Machine, K-Nearest Neighbour, Random Forest, and eXtreme Gradient Boosting (XGBoost). XGBoost showed superior performance in the classification of cognitive states, with an accuracy of 88.07%. Furthermore, SHapley Additive exPlanations (SHAP) was adopted to reveal the connections between different brain regions that contributed to the classification of cognitive state. SHAP analysis reveals that the connections in the frontal, temporal, and central regions are most important for the high cognitive state. Collectively, this study may provide further evidence for educators to design cognitive-guided instructional activities to enhance learners' HOTS.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"5"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-09DOI: 10.1007/s11571-024-10190-1
K G Shanthi, A Mary Joy Kinol, S Rukmani Devi, K Kannan
{"title":"Cognitive neurodynamic approaches to adaptive signal processing in wireless sensor networks.","authors":"K G Shanthi, A Mary Joy Kinol, S Rukmani Devi, K Kannan","doi":"10.1007/s11571-024-10190-1","DOIUrl":"10.1007/s11571-024-10190-1","url":null,"abstract":"<p><p>In recent years, Wireless Sensor Networks (WSN) have become vital because of their versatility in numerous applications. Nevertheless, the attain problems like inherent noise, and limited node computation capabilities, result in reduced sensor node lifespan as well as enhanced power consumption. To tackle such problems, this study develops a Modified-Distributed Arithmetic-Offset Binary Coding-based Adaptive Finite Impulse Response (MDA-OBC based AFIR) framework. By leveraging Modified Distributed Arithmetic (MDA) which optimizes arithmetic operations by replacing the multipliers with lookup tables (LUT) hence minimizing energy consumption as well as computational complexity. Offset Binary Coding (OBC) enhanced the efficiency of data transmission by minimizing the data representation overhead. In addition to this, the adaptive strategy is incorporated with the Adaptive Finite Impulse Response (AFIR) framework permitting the filters to dynamically adjust to varying signal characteristics, thus offering high noise suppression and low distortion rates. Comprehensive simulations and comparative analysis validate the effectiveness of the proposed MDA-OBC-based AFIR method. The proposed method attained a lower energy consumption of 1.5 J and 130 W power consumption than the traditional implementations, resulting in significant energy efficiency and data transmission in signal preprocessing and noise suppression in WSNs.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"11"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-03-22DOI: 10.1007/s11571-025-10239-9
Hongze Sun, Shifeng Mao, Wuque Cai, Yan Cui, Duo Chen, Dezhong Yao, Daqing Guo
{"title":"BISNN: bio-information-fused spiking neural networks for enhanced EEG-based emotion recognition.","authors":"Hongze Sun, Shifeng Mao, Wuque Cai, Yan Cui, Duo Chen, Dezhong Yao, Daqing Guo","doi":"10.1007/s11571-025-10239-9","DOIUrl":"10.1007/s11571-025-10239-9","url":null,"abstract":"<p><p>Spiking neural networks (SNNs), known for their rich spatio-temporal dynamics, have recently gained considerable attention in EEG-based emotion recognition. However, conventional model training approaches often fail to fully exploit the capabilities of SNNs, posing challenges for effective EEG data analysis. In this work, we propose a novel bio-information-fused SNN (BISNN) model to enhance EEG-based emotion recognition. The BISNN model incorporates biologically plausible intrinsic parameters into spiking neurons and is initialized with a structurally equivalent pre-trained ANN model. By constructing a bio-information-fused loss function, the BISNN model enables simultaneous training under dual constraints. Extensive experiments on benchmark EEG-based emotion datasets demonstrate that the BISNN model achieves competitive performance compared to state-of-the-art methods. Additionally, ablation studies investigating various components further elucidate the mechanisms underlying the model's effectiveness and evolution, aligning well with previous findings.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"52"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-01-09DOI: 10.1007/s11571-024-10204-y
Haibin Yin, Xiaojuan Sun, Kai Yang, Yueheng Lan, Zeying Lu
{"title":"Regulation of dentate gyrus pattern separation by hilus ectopic granule cells.","authors":"Haibin Yin, Xiaojuan Sun, Kai Yang, Yueheng Lan, Zeying Lu","doi":"10.1007/s11571-024-10204-y","DOIUrl":"10.1007/s11571-024-10204-y","url":null,"abstract":"<p><p>The dentate gyrus (DG) in hippocampus is reported to perform pattern separation, converting similar inputs into different outputs and thus avoiding memory interference. Previous studies have found that human and mice with epilepsy have significant pattern separation defects and a portion of adult-born granule cells (abGCs) migrate abnormally into the hilus, forming hilus ectopic granule cells (HEGCs). For the lack of relevant pathophysiological experiments, how HEGCs affect pattern separation remains unclear. Therefore, in this paper, we will construct the DG neuronal circuit and focus on discussing effects of HEGCs on pattern separation numerically. The obtained results showed that HEGCs impaired pattern separation efficiency since the sparse firing of granule cells (GCs) was destroyed. We provided new insights into the underlining mechanisms of HEGCs impairing pattern separation through analyzing two excitatory circuits: GC-HEGC-GC and GC-Mossy cell (MC)-GC, both of which involve the participation of HEGCs within the DG. It is revealed that the recurrent excitatory circuit GC-HEGC-GC formed by HEGCs mossy fiber sprouting significantly enhanced GCs activity, consequently disrupted pattern separation. However, another excitatory circuit had negligible effects on pattern separation due to the direct and indirect influences of MCs on GCs, which in turn led to the GCs sparse firing. Thus, HEGCs impair DG pattern separation mainly through the GC-HEGC-GC circuit and therefore ablating HEGCs may be one of the effective ways to improve pattern separation in patients with epilepsy.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"10"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Joint disentangled representation and domain adversarial training for EEG-based cross-session biometric recognition in single-task protocols.","authors":"Honggang Liu, Xuanyu Jin, Dongjun Liu, Wanzeng Kong, Jiajia Tang, Yong Peng","doi":"10.1007/s11571-024-10214-w","DOIUrl":"10.1007/s11571-024-10214-w","url":null,"abstract":"<p><p>The increasing adoption of wearable technologies highlights the potential of electroencephalogram (EEG) signals for biometric recognition. However, the intrinsic variability in cross-session EEG data presents substantial challenges in maintaining model stability and reliability. Moreover, the diversity within single-task protocols complicates achieving consistent and generalized model performance. To address these issues, we propose the Joint Disentangled Representation with Domain Adversarial Training (JDR-DAT) framework for EEG-based cross-session biometric recognition within single-task protocols. The JDR-DAT framework disentangles identity-specific features through mutual information estimation and incorporates domain adversarial training to enhance longitudinal robustness. Extensive experiments on longitudinal EEG data from two publicly available single-task protocol datasets-RSVP-based (Rapid Serial Visual Presentation) and MI-based (Motor Imagery)-demonstrate the efficacy of the JDR-DAT framework, with the proposed method achieving average accuracies of 85.83% and 96.72%, respectively.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"31"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-03-22DOI: 10.1007/s11571-025-10245-x
Zhibin Li, Jingyao Sun, Tianyu Jia, Linhong Ji, Chong Li
{"title":"Respiratory modulation of beta corticomuscular coherence in isometric hand movements.","authors":"Zhibin Li, Jingyao Sun, Tianyu Jia, Linhong Ji, Chong Li","doi":"10.1007/s11571-025-10245-x","DOIUrl":"10.1007/s11571-025-10245-x","url":null,"abstract":"<p><p>Respiration is a fundamental physiological function in humans, often synchronized with movement to enhance performance and efficiency. Recent studies have underscored the modulatory effects of respiratory rhythms on brain oscillations and various behavioral responses, including sensorimotor processes. In light of this connection, our study aimed to investigate the influence of different respiratory patterns on beta corticomuscular coherence (CMC) during isometric hand flexion and extension. Utilizing electroencephalogram (EEG) and surface electromyography (sEMG), we examined three breathing conditions: normal breathing, deep inspiration, and deep expiration. Two experimental protocols were employed: the first experiment required participants to simultaneously breathe and exert force, while the other involved maintaining a constant force while varying breathing patterns. The results revealed that deep inspiration significantly enhanced beta CMC during respiration-synchronized tasks, whereas normal breathing resulted in higher CMC compared to deep respiration during sustained force exertion. In the second experiment, beta CMC was cyclically modulated by respiratory phase across all breathing conditions. The difference in the outcomes from the two protocols demonstrated a task-specific modulation of respiration on motor control. Overall, these findings indicate the complex dynamics of respiration-related effects on corticomuscular neural communication and provide valuable insights into the mechanisms underpinning the coupling between respiration and motor function.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10245-x.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"54"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brain analysis to approach human muscles synergy using deep learning.","authors":"Elham Samadi, Fereidoun Nowshiravan Rahatabad, Ali Motie Nasrabadi, Nader Jafarnia Dabanlou","doi":"10.1007/s11571-025-10228-y","DOIUrl":"10.1007/s11571-025-10228-y","url":null,"abstract":"<p><p>Brain signals and muscle movements have been analyzed using electroencephalogram (EEG) data in several studies. EEG signals contain a lot of noise, such as electromyographic (EMG) waves. Further studies have been done to improve the quality of the results, though it is thought that the combination of these two signals can lead to a significant improvement in the synergistic analysis of muscle movements and muscle connections. Using graph theory, this study examined the interaction of EMG and EEG signals during hand movement and estimated the synergy between muscle and brain signals. Mapping of the brain diagram was also developed to reconstruct the muscle signals from the muscle connections in the brain diagram. The proposed method included noise removal from EEG and EMG signals, graph feature analysis from EEG, and synergy calculation from EMG. Two methods were used to estimate synergy. In the first method, after calculating the brain connections, the features of the communication graph were extracted and then synergy estimating was made with neural networks. In the second method, a convolutional network created a transition from the matrix of brain connections to the synergistic EMG signal. This study reached the high correlation values of 99.8% and maximum MSE error of 0.0084. Compared to other graph-based methods, this method based on regression analysis had a very significant performance. This research can lead to the improvement of rehabilitation methods and brain-computer interfaces.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"44"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143491021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive NeurodynamicsPub Date : 2025-12-01Epub Date: 2025-04-04DOI: 10.1007/s11571-025-10242-0
Subashis Karmakar, Tandra Pal, Chiranjib Koley
{"title":"Detection of cognitive load during computer-aided education using infrared sensors.","authors":"Subashis Karmakar, Tandra Pal, Chiranjib Koley","doi":"10.1007/s11571-025-10242-0","DOIUrl":"10.1007/s11571-025-10242-0","url":null,"abstract":"<p><p>Technology integration in modern education has transformed traditional teaching-learning methods, but maintaining student attentiveness during computer-aided activities remains challenging. Neuroimaging advancements provide valuable insights into cognitive processes. This study measures cognitive load during computer-aided education. We have collected functional near-infrared spectroscopy (fNIRS) brain signals while subjects perform mental tasks and rest. Three datasets have been considered to evaluate the performance of the proposed model. The first two datasets are open-access, and we prepare the third dataset by collecting fNIRS brain signals from 14 healthy subjects. Two feature extraction techniques are proposed: manual and automatic based on wavelet scattering transform (WST). A one dimensional convolutional neural network (1D CNN) is also proposed to automatically extract features through feature engineering and classification. For comparison, four machine learning classifiers, linear discriminant analysis (LDA), Naive Bayes (NB), k-nearest neighbors (KNN) and support vector machine (SVM), are also considered. Classification performance is evaluated using accuracy, precision, recall and F1-score across all datasets. Computational cost, i.e., the CPU time and memory utilization for extracting the features and testing the classifiers, is also evaluated. The results suggest that when considering four classifiers across three datasets and comparing among the manual and the WST-based feature extraction methods, the average performance of 1D CNN is superior in terms of classification accuracy (1.16 times higher), precision (1.10 times higher), recall (1.10 times higher) and F1-score (1.09 times higher). However, the CPU time and memory utilization for 1D CNN are significantly higher, 10.09 and 14.70 times, respectively. In comparison to four state-of-the-art deep learning models, the proposed 1D CNN also shows best classification accuracy (92.99%). The analysis of the results shows that identifying cognitive load, SVM with Gaussian kernel function on WST based methods, provides satisfactory classification performance with significantly less CPU time and memory utilization.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"58"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monitoring nap deprivation-induced fatigue using fNIRS and deep learning.","authors":"Pei Ma, Chenyang Pan, Huijuan Shen, Wushuang Shen, Hui Chen, Xuedian Zhang, Shuyu Xu, Jingzhou Xu, Tong Su","doi":"10.1007/s11571-025-10219-z","DOIUrl":"10.1007/s11571-025-10219-z","url":null,"abstract":"<p><p>Fatigue-induced incidents in transportation, aerospace, military, and other areas have been on the rise, posing a threat to human life and safety. The determination of fatigue states holds significant importance, especially through reliable and conveniently available physiological indicators. Here, a portable custom-built fNIRS system was used to monitor the fatigue state caused by nap deprivation. fNIRS signals in ten channels at the prefrontal cortex were collected, changes in blood oxygen concentration were analyzed, followed by a deep learning model to classify fatigue states. For the high-dimensionality and multi-channel characteristics of the fNIRS signal data, a novel 1D revised CNN-ResNet network was proposed based on the double-layer channel attenuation residual block. The results showed a 97.78% accuracy in fatigue state classification, significantly superior than several conventional methods. Furthermore, a fatigue-arousal experiment was designed to explore the feasibility of forced arousal of fatigued subjects through exercise stimulation. The fNIRS results showed a significant increase in brain activity with the conduction of exercise. The proposed method serves as a reliable tool for the evaluation of fatigue states, potentially reducing fatigue-induced harms and risks.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"30"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}