{"title":"海马神经元亚群对淀粉样蛋白-β诱导的新颖性反应的异质性减弱。","authors":"Xiaoxin Ren, Yimeng Wang, Xin Li, Xueling Wang, Zhaodi Liu, Jiajia Yang, Ling Wang, Chenguang Zheng","doi":"10.1007/s11571-025-10237-x","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) patients exhibited episodic memory impairments including location-object recognition in a spatial environment, which was also presented in animal models with amyloid-β (Aβ) accumulation. A potential cellular mechanism was the unstable representation of spatial information and lack of discrimination ability of novel stimulus in the hippocampal place cells. However, how the firing characteristics of different hippocampal subsets responding to diverse spatial information were interrupted by Aβ accumulation remains unclear. In this study, we observed impaired novel object-location recognition in Aβ-treated Long-Evans rats, with larger receptive fields of place cells in hippocampal CA1, compared with those in the saline-treated group. We identified two subsets of place cells coding object information (ObjCell) and global environment (EnvCell) during the task, with firing heterogeneity in response to introduced novel information. ObjCells displayed a dynamic representation responding to the introduction of novel information, while EnvCells exhibited a stable representation to support the recognition of the familiar environment. However, the dynamic firing patterns of these two subsets of cells were disrupted to present attenuated heterogeneity under Aβ accumulation. The impaired spatial representation novelty information could be due to the disturbed gamma modulation of neural activities. Taken together, these findings provide new evidence for novelty recognition impairments of AD rats with spatial representation dysfunctions of hippocampal subsets.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"56"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947398/pdf/","citationCount":"0","resultStr":"{\"title\":\"Attenuated heterogeneity of hippocampal neuron subsets in response to novelty induced by amyloid-β.\",\"authors\":\"Xiaoxin Ren, Yimeng Wang, Xin Li, Xueling Wang, Zhaodi Liu, Jiajia Yang, Ling Wang, Chenguang Zheng\",\"doi\":\"10.1007/s11571-025-10237-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) patients exhibited episodic memory impairments including location-object recognition in a spatial environment, which was also presented in animal models with amyloid-β (Aβ) accumulation. A potential cellular mechanism was the unstable representation of spatial information and lack of discrimination ability of novel stimulus in the hippocampal place cells. However, how the firing characteristics of different hippocampal subsets responding to diverse spatial information were interrupted by Aβ accumulation remains unclear. In this study, we observed impaired novel object-location recognition in Aβ-treated Long-Evans rats, with larger receptive fields of place cells in hippocampal CA1, compared with those in the saline-treated group. We identified two subsets of place cells coding object information (ObjCell) and global environment (EnvCell) during the task, with firing heterogeneity in response to introduced novel information. ObjCells displayed a dynamic representation responding to the introduction of novel information, while EnvCells exhibited a stable representation to support the recognition of the familiar environment. However, the dynamic firing patterns of these two subsets of cells were disrupted to present attenuated heterogeneity under Aβ accumulation. The impaired spatial representation novelty information could be due to the disturbed gamma modulation of neural activities. Taken together, these findings provide new evidence for novelty recognition impairments of AD rats with spatial representation dysfunctions of hippocampal subsets.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"56\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947398/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10237-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10237-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
阿尔茨海默病(AD)患者表现出包括空间环境中位置-物体识别在内的情景记忆障碍,这也出现在淀粉样蛋白-β (a β)积累的动物模型中。可能的细胞机制是海马位置细胞对空间信息的表征不稳定和对新刺激缺乏辨别能力。然而,不同海马亚群响应不同空间信息的放电特征是如何被Aβ积累打断的尚不清楚。在这项研究中,我们观察到a β处理的Long-Evans大鼠的新物体定位识别受损,与盐处理组相比,海马CA1位置细胞的接受野区更大。我们在任务过程中发现了编码目标信息(ObjCell)和全局环境(EnvCell)的两个位置细胞子集,它们对引入的新信息具有异质性。ObjCells对新信息的引入表现出动态表征,而EnvCells则表现出稳定表征,以支持对熟悉环境的识别。然而,这两个亚群细胞的动态放电模式在Aβ积累下被破坏,呈现出减弱的异质性。空间表征新颖性信息的受损可能与神经活动的伽马调制受到干扰有关。综上所述,这些发现为阿尔茨海默病大鼠海马亚群空间表征功能障碍的新颖性识别障碍提供了新的证据。
Attenuated heterogeneity of hippocampal neuron subsets in response to novelty induced by amyloid-β.
Alzheimer's disease (AD) patients exhibited episodic memory impairments including location-object recognition in a spatial environment, which was also presented in animal models with amyloid-β (Aβ) accumulation. A potential cellular mechanism was the unstable representation of spatial information and lack of discrimination ability of novel stimulus in the hippocampal place cells. However, how the firing characteristics of different hippocampal subsets responding to diverse spatial information were interrupted by Aβ accumulation remains unclear. In this study, we observed impaired novel object-location recognition in Aβ-treated Long-Evans rats, with larger receptive fields of place cells in hippocampal CA1, compared with those in the saline-treated group. We identified two subsets of place cells coding object information (ObjCell) and global environment (EnvCell) during the task, with firing heterogeneity in response to introduced novel information. ObjCells displayed a dynamic representation responding to the introduction of novel information, while EnvCells exhibited a stable representation to support the recognition of the familiar environment. However, the dynamic firing patterns of these two subsets of cells were disrupted to present attenuated heterogeneity under Aβ accumulation. The impaired spatial representation novelty information could be due to the disturbed gamma modulation of neural activities. Taken together, these findings provide new evidence for novelty recognition impairments of AD rats with spatial representation dysfunctions of hippocampal subsets.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.