脑损伤区域有效连接的改变和脑卒中后的认知障碍。

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-02-04 DOI:10.1007/s11571-024-10209-7
Jing Zhang, Hui Tang, Lijun Zuo, Hao Liu, Zixiao Li, Jing Jing, Yongjun Wang, Tao Liu
{"title":"脑损伤区域有效连接的改变和脑卒中后的认知障碍。","authors":"Jing Zhang, Hui Tang, Lijun Zuo, Hao Liu, Zixiao Li, Jing Jing, Yongjun Wang, Tao Liu","doi":"10.1007/s11571-024-10209-7","DOIUrl":null,"url":null,"abstract":"<p><p>Poststroke cognitive impairments (PSCI) reflect widespread network dysfunction due to structural damage, abnormal neural activity, or abnormal connections in affected brain regions. The exact influence of these lesioned regions on the related functional network and their role in PSCI remains unclear. We recruited 35 first-time stroke patients who had basal ganglia infarcts and PSCI, along with 29 age-matched healthy controls. We utilized T1-weighted imaging to inspect structural damage with regional gray matter volume (GMV). Resting-state fMRI data were utilized to examine spontaneous activities with regional Wavelet-ALFF metric, investigate dynamic functional connectivity (dFC) by seeding the region with damaged GMV, and further study effective connectivity within the abnormal dFC network and its impact on PSCI. In comparison to HC, patients showed significant reduced GMV in the bilateral Rolandic operculum (ROL), along with notable abnormal Wavelet-ALFF values in the right Precuneus (PCUN) and left Cerebellum_9 (CER9). Particularly, an abnormal dFC network seeded in the left ROL, demonstrating significantly differential between PSCI and HC groups and remaining consistent across all time windows, was observed. This abnormal dFC network comprised the left ROL as the seed region, the right ROL, bilateral PCUN, bilateral CER9, right Superior Temporal Gyrus (STG), and right Parahippocampal Gyrus (PHG). Notably, in patients, impaired functions across various cognitive domains significantly influenced the altered effective connections among the abnormal regions, particularly impacting the connections between structurally damaged regions and those with abnormal spontaneous activity. These findings suggest that altered effective connectivity networks within lesioned regions may contribute to deficits in various cognitive domains in PSCI.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-024-10209-7.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"36"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794930/pdf/","citationCount":"0","resultStr":"{\"title\":\"Altered effective connectivity within brain lesioned regions and cognitive impairment after stroke.\",\"authors\":\"Jing Zhang, Hui Tang, Lijun Zuo, Hao Liu, Zixiao Li, Jing Jing, Yongjun Wang, Tao Liu\",\"doi\":\"10.1007/s11571-024-10209-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poststroke cognitive impairments (PSCI) reflect widespread network dysfunction due to structural damage, abnormal neural activity, or abnormal connections in affected brain regions. The exact influence of these lesioned regions on the related functional network and their role in PSCI remains unclear. We recruited 35 first-time stroke patients who had basal ganglia infarcts and PSCI, along with 29 age-matched healthy controls. We utilized T1-weighted imaging to inspect structural damage with regional gray matter volume (GMV). Resting-state fMRI data were utilized to examine spontaneous activities with regional Wavelet-ALFF metric, investigate dynamic functional connectivity (dFC) by seeding the region with damaged GMV, and further study effective connectivity within the abnormal dFC network and its impact on PSCI. In comparison to HC, patients showed significant reduced GMV in the bilateral Rolandic operculum (ROL), along with notable abnormal Wavelet-ALFF values in the right Precuneus (PCUN) and left Cerebellum_9 (CER9). Particularly, an abnormal dFC network seeded in the left ROL, demonstrating significantly differential between PSCI and HC groups and remaining consistent across all time windows, was observed. This abnormal dFC network comprised the left ROL as the seed region, the right ROL, bilateral PCUN, bilateral CER9, right Superior Temporal Gyrus (STG), and right Parahippocampal Gyrus (PHG). Notably, in patients, impaired functions across various cognitive domains significantly influenced the altered effective connections among the abnormal regions, particularly impacting the connections between structurally damaged regions and those with abnormal spontaneous activity. These findings suggest that altered effective connectivity networks within lesioned regions may contribute to deficits in various cognitive domains in PSCI.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-024-10209-7.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"36\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794930/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10209-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10209-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脑卒中后认知障碍(PSCI)反映了由于结构损伤、神经活动异常或受影响脑区域异常连接而引起的广泛的网络功能障碍。这些受损区域对相关功能网络的确切影响及其在PSCI中的作用尚不清楚。我们招募了35名患有基底神经节梗死和PSCI的首次中风患者,以及29名年龄匹配的健康对照。我们使用t1加权成像检测区域灰质体积(GMV)来检查结构损伤。静息状态fMRI数据利用区域小波- alff度量来检测自发活动,通过在受损GMV区域植入动态功能连接(dFC)来研究动态功能连接(dFC),并进一步研究异常dFC网络内的有效连接及其对PSCI的影响。与HC相比,患者双侧rolanddic operculum (ROL)的GMV明显降低,右侧楔前叶(PCUN)和左侧小脑区(CER9)的小波- alff值明显异常。特别是,观察到左侧ROL中存在异常的dFC网络,这表明PSCI组和HC组之间存在显着差异,并且在所有时间窗口中保持一致。该异常dFC网络包括左侧ROL作为种子区、右侧ROL、双侧PCUN、双侧CER9、右侧颞上回(STG)和右侧海马旁回(PHG)。值得注意的是,在患者中,不同认知领域的功能受损显著影响了异常区域之间有效连接的改变,特别是影响了结构受损区域与异常自发活动区域之间的连接。这些发现表明,受损区域内有效连接网络的改变可能导致PSCI中各种认知领域的缺陷。补充信息:在线版本包含补充资料,下载地址为10.1007/s11571-024-10209-7。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Altered effective connectivity within brain lesioned regions and cognitive impairment after stroke.

Poststroke cognitive impairments (PSCI) reflect widespread network dysfunction due to structural damage, abnormal neural activity, or abnormal connections in affected brain regions. The exact influence of these lesioned regions on the related functional network and their role in PSCI remains unclear. We recruited 35 first-time stroke patients who had basal ganglia infarcts and PSCI, along with 29 age-matched healthy controls. We utilized T1-weighted imaging to inspect structural damage with regional gray matter volume (GMV). Resting-state fMRI data were utilized to examine spontaneous activities with regional Wavelet-ALFF metric, investigate dynamic functional connectivity (dFC) by seeding the region with damaged GMV, and further study effective connectivity within the abnormal dFC network and its impact on PSCI. In comparison to HC, patients showed significant reduced GMV in the bilateral Rolandic operculum (ROL), along with notable abnormal Wavelet-ALFF values in the right Precuneus (PCUN) and left Cerebellum_9 (CER9). Particularly, an abnormal dFC network seeded in the left ROL, demonstrating significantly differential between PSCI and HC groups and remaining consistent across all time windows, was observed. This abnormal dFC network comprised the left ROL as the seed region, the right ROL, bilateral PCUN, bilateral CER9, right Superior Temporal Gyrus (STG), and right Parahippocampal Gyrus (PHG). Notably, in patients, impaired functions across various cognitive domains significantly influenced the altered effective connections among the abnormal regions, particularly impacting the connections between structurally damaged regions and those with abnormal spontaneous activity. These findings suggest that altered effective connectivity networks within lesioned regions may contribute to deficits in various cognitive domains in PSCI.

Supplementary information: The online version contains supplementary material available at 10.1007/s11571-024-10209-7.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信