Aβ沉积影响下星形胶质细胞-神经元相互作用的动态建模。

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-04-10 DOI:10.1007/s11571-025-10246-w
JiangNing Wang, XiaoLi Yang
{"title":"Aβ沉积影响下星形胶质细胞-神经元相互作用的动态建模。","authors":"JiangNing Wang, XiaoLi Yang","doi":"10.1007/s11571-025-10246-w","DOIUrl":null,"url":null,"abstract":"<p><p>β-amyloid (Aβ) protein accumulation is recognized as a key factor in Alzheimer's disease (AD) pathogenesis. Its effects on astrocyte function appear primarily as disturbances to intracellular calcium signaling, which, in turn, affects neuronal excitability. We propose an innovative neuron-astrocyte interaction model to examine how Aβ accumulation influences astrocyte calcium oscillation and neuronal excitability, emphasizing its significance in AD pathogenesis. This comprehensive model describes not only the response of the astrocyte to presynaptic neuron stimulation but also the release of the downstream signaling glutamate and its consequential feedback on neurons. Our research concentrates on changes within two prominent pathways affected by Aβ: the creation of Aβ astrocyte membrane pores and the enhanced sensitivity of ryanodine receptors. By incorporating these adjustments into our astrocyte model, we can reproduce previous experimental findings regarding aberrant astrocyte calcium activity and neural behavior associated with Aβ from a neural computational viewpoint. Within a specified range of Aβ influence, our numerical analysis reveals that astrocyte cytoplasmic calcium rises, calcium oscillation frequency increases, and the time to the first calcium peak shortens, indicating the disrupted astrocyte calcium signaling. Simultaneously, the neuronal firing rate and cytosolic calcium concentration increase while the threshold current for initiating repetitive firing diminishes, implying heightened neuronal excitability. Given that increased neuronal excitability commonly occurs in early AD patients and correlates with cognitive decline, our findings may highlight the importance of Aβ accumulation in AD pathogenesis and provide a theoretical basis for identifying neuronal markers in the early stages of the disease.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"60"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985881/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic modeling of astrocyte-neuron interactions under the influence of Aβ deposition.\",\"authors\":\"JiangNing Wang, XiaoLi Yang\",\"doi\":\"10.1007/s11571-025-10246-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β-amyloid (Aβ) protein accumulation is recognized as a key factor in Alzheimer's disease (AD) pathogenesis. Its effects on astrocyte function appear primarily as disturbances to intracellular calcium signaling, which, in turn, affects neuronal excitability. We propose an innovative neuron-astrocyte interaction model to examine how Aβ accumulation influences astrocyte calcium oscillation and neuronal excitability, emphasizing its significance in AD pathogenesis. This comprehensive model describes not only the response of the astrocyte to presynaptic neuron stimulation but also the release of the downstream signaling glutamate and its consequential feedback on neurons. Our research concentrates on changes within two prominent pathways affected by Aβ: the creation of Aβ astrocyte membrane pores and the enhanced sensitivity of ryanodine receptors. By incorporating these adjustments into our astrocyte model, we can reproduce previous experimental findings regarding aberrant astrocyte calcium activity and neural behavior associated with Aβ from a neural computational viewpoint. Within a specified range of Aβ influence, our numerical analysis reveals that astrocyte cytoplasmic calcium rises, calcium oscillation frequency increases, and the time to the first calcium peak shortens, indicating the disrupted astrocyte calcium signaling. Simultaneously, the neuronal firing rate and cytosolic calcium concentration increase while the threshold current for initiating repetitive firing diminishes, implying heightened neuronal excitability. Given that increased neuronal excitability commonly occurs in early AD patients and correlates with cognitive decline, our findings may highlight the importance of Aβ accumulation in AD pathogenesis and provide a theoretical basis for identifying neuronal markers in the early stages of the disease.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"60\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985881/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10246-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10246-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

β-淀粉样蛋白(a β)积累被认为是阿尔茨海默病(AD)发病的关键因素。它对星形胶质细胞功能的影响主要表现为干扰细胞内钙信号,进而影响神经元的兴奋性。我们提出了一个创新的神经元-星形胶质细胞相互作用模型来研究Aβ积累如何影响星形胶质细胞钙振荡和神经元兴奋性,强调其在AD发病机制中的意义。这个综合模型不仅描述了星形胶质细胞对突触前神经元刺激的反应,还描述了下游信号谷氨酸的释放及其对神经元的反馈。我们的研究集中在受Aβ影响的两个主要途径的变化:Aβ星形胶质细胞膜孔的形成和ryanodine受体敏感性的增强。通过将这些调整纳入我们的星形胶质细胞模型,我们可以从神经计算的角度重现先前关于星形胶质细胞钙活性异常和与a β相关的神经行为的实验结果。在特定的a β影响范围内,我们的数值分析显示星形胶质细胞细胞质钙升高,钙振荡频率增加,到达第一个钙峰的时间缩短,表明星形胶质细胞钙信号被破坏。同时,神经元放电速率和胞质钙浓度增加,而触发重复放电的阈值电流减少,这意味着神经元兴奋性增强。鉴于神经元兴奋性增加通常发生在早期AD患者中,并与认知能力下降相关,我们的研究结果可能突出了a β积累在AD发病机制中的重要性,并为识别疾病早期的神经元标志物提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic modeling of astrocyte-neuron interactions under the influence of Aβ deposition.

β-amyloid (Aβ) protein accumulation is recognized as a key factor in Alzheimer's disease (AD) pathogenesis. Its effects on astrocyte function appear primarily as disturbances to intracellular calcium signaling, which, in turn, affects neuronal excitability. We propose an innovative neuron-astrocyte interaction model to examine how Aβ accumulation influences astrocyte calcium oscillation and neuronal excitability, emphasizing its significance in AD pathogenesis. This comprehensive model describes not only the response of the astrocyte to presynaptic neuron stimulation but also the release of the downstream signaling glutamate and its consequential feedback on neurons. Our research concentrates on changes within two prominent pathways affected by Aβ: the creation of Aβ astrocyte membrane pores and the enhanced sensitivity of ryanodine receptors. By incorporating these adjustments into our astrocyte model, we can reproduce previous experimental findings regarding aberrant astrocyte calcium activity and neural behavior associated with Aβ from a neural computational viewpoint. Within a specified range of Aβ influence, our numerical analysis reveals that astrocyte cytoplasmic calcium rises, calcium oscillation frequency increases, and the time to the first calcium peak shortens, indicating the disrupted astrocyte calcium signaling. Simultaneously, the neuronal firing rate and cytosolic calcium concentration increase while the threshold current for initiating repetitive firing diminishes, implying heightened neuronal excitability. Given that increased neuronal excitability commonly occurs in early AD patients and correlates with cognitive decline, our findings may highlight the importance of Aβ accumulation in AD pathogenesis and provide a theoretical basis for identifying neuronal markers in the early stages of the disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信