{"title":"MBRSTCformer:一种知识嵌入的局部-全局时空转换器,用于情感识别。","authors":"Chenglin Lin, Huimin Lu, Chenyu Pan, Songzhe Ma, Zexing Zhang, Runhui Tian","doi":"10.1007/s11571-025-10277-3","DOIUrl":null,"url":null,"abstract":"<p><p>Emotion recognition is an essential prerequisite for realizing generalized BCI, which possesses an extensive range of applications in real life. EEG-based emotion recognition has become mainstream due to its real-time mapping of brain emotional activities, so a robust EEG-based emotion recognition model is of great interest. However, most existing deep learning emotion recognition methods treat the EEG signal as a whole feature extraction, which will destroy its local stimulation differences and fail to extract local features of the brain region well. Inspired by the cognitive mechanisms of the brain, we propose the multi-brain regions spatiotemporal collaboration transformer (MBRSTCfromer) framework for EEG-based emotion recognition. First, inspired by the prior knowledge, we propose the Multi-Brain Regions Collaboration Network. The EEG data are processed separately after being divided by brain regions, and stimulation scores are presented to quantify the stimulation produced by different brain regions and feedback on the stimulation degree to the MBRSTCfromer. Second, we propose a Cascade Pyramid Spatial Fusion Temporal Convolution Network for multi-brain regions EEG features fusion. Finally, we conduct comprehensive experiments on two mainstream emotion recognition datasets to validate the effectiveness of our proposed MBRSTCfromer framework. We achieved 98.63 <math><mo>%</mo></math> , 98.15 <math><mo>%</mo></math> , and 98.58 <math><mo>%</mo></math> accuracy on the three dimensions (arousal, valence, and dominance) on the DEAP dataset; and 97.66 <math><mo>%</mo></math> , 97.07 <math><mo>%</mo></math> , and 97.97 <math><mo>%</mo></math> on the DREAMER dataset.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"95"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174000/pdf/","citationCount":"0","resultStr":"{\"title\":\"MBRSTCformer: a knowledge embedded local-global spatiotemporal transformer for emotion recognition.\",\"authors\":\"Chenglin Lin, Huimin Lu, Chenyu Pan, Songzhe Ma, Zexing Zhang, Runhui Tian\",\"doi\":\"10.1007/s11571-025-10277-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Emotion recognition is an essential prerequisite for realizing generalized BCI, which possesses an extensive range of applications in real life. EEG-based emotion recognition has become mainstream due to its real-time mapping of brain emotional activities, so a robust EEG-based emotion recognition model is of great interest. However, most existing deep learning emotion recognition methods treat the EEG signal as a whole feature extraction, which will destroy its local stimulation differences and fail to extract local features of the brain region well. Inspired by the cognitive mechanisms of the brain, we propose the multi-brain regions spatiotemporal collaboration transformer (MBRSTCfromer) framework for EEG-based emotion recognition. First, inspired by the prior knowledge, we propose the Multi-Brain Regions Collaboration Network. The EEG data are processed separately after being divided by brain regions, and stimulation scores are presented to quantify the stimulation produced by different brain regions and feedback on the stimulation degree to the MBRSTCfromer. Second, we propose a Cascade Pyramid Spatial Fusion Temporal Convolution Network for multi-brain regions EEG features fusion. Finally, we conduct comprehensive experiments on two mainstream emotion recognition datasets to validate the effectiveness of our proposed MBRSTCfromer framework. We achieved 98.63 <math><mo>%</mo></math> , 98.15 <math><mo>%</mo></math> , and 98.58 <math><mo>%</mo></math> accuracy on the three dimensions (arousal, valence, and dominance) on the DEAP dataset; and 97.66 <math><mo>%</mo></math> , 97.07 <math><mo>%</mo></math> , and 97.97 <math><mo>%</mo></math> on the DREAMER dataset.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"95\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174000/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10277-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10277-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
MBRSTCformer: a knowledge embedded local-global spatiotemporal transformer for emotion recognition.
Emotion recognition is an essential prerequisite for realizing generalized BCI, which possesses an extensive range of applications in real life. EEG-based emotion recognition has become mainstream due to its real-time mapping of brain emotional activities, so a robust EEG-based emotion recognition model is of great interest. However, most existing deep learning emotion recognition methods treat the EEG signal as a whole feature extraction, which will destroy its local stimulation differences and fail to extract local features of the brain region well. Inspired by the cognitive mechanisms of the brain, we propose the multi-brain regions spatiotemporal collaboration transformer (MBRSTCfromer) framework for EEG-based emotion recognition. First, inspired by the prior knowledge, we propose the Multi-Brain Regions Collaboration Network. The EEG data are processed separately after being divided by brain regions, and stimulation scores are presented to quantify the stimulation produced by different brain regions and feedback on the stimulation degree to the MBRSTCfromer. Second, we propose a Cascade Pyramid Spatial Fusion Temporal Convolution Network for multi-brain regions EEG features fusion. Finally, we conduct comprehensive experiments on two mainstream emotion recognition datasets to validate the effectiveness of our proposed MBRSTCfromer framework. We achieved 98.63 , 98.15 , and 98.58 accuracy on the three dimensions (arousal, valence, and dominance) on the DEAP dataset; and 97.66 , 97.07 , and 97.97 on the DREAMER dataset.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.