解开蓝斑-去甲肾上腺素系统的功能复杂性:从分子解剖学到神经动力学建模的见解。

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-01-23 DOI:10.1007/s11571-024-10208-8
Chun-Wang Su, Fan Yang, Runchen Lai, Yanhai Li, Hadia Naeem, Nan Yao, Si-Ping Zhang, Haiqing Zhang, Youjun Li, Zi-Gang Huang
{"title":"解开蓝斑-去甲肾上腺素系统的功能复杂性:从分子解剖学到神经动力学建模的见解。","authors":"Chun-Wang Su, Fan Yang, Runchen Lai, Yanhai Li, Hadia Naeem, Nan Yao, Si-Ping Zhang, Haiqing Zhang, Youjun Li, Zi-Gang Huang","doi":"10.1007/s11571-024-10208-8","DOIUrl":null,"url":null,"abstract":"<p><p>The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory. Furthermore, we explore the system's involvement in stress responses and pain modulation, as well as its developmental changes and susceptibility to stressors. By integrating molecular, electrophysiological, and theoretical modeling approaches, we shed light on the LC-NE system's complex role in the brain's adaptability and its potential relevance to neurological and psychiatric disorders.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"29"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757662/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the functional complexity of the locus coeruleus-norepinephrine system: insights from molecular anatomy to neurodynamic modeling.\",\"authors\":\"Chun-Wang Su, Fan Yang, Runchen Lai, Yanhai Li, Hadia Naeem, Nan Yao, Si-Ping Zhang, Haiqing Zhang, Youjun Li, Zi-Gang Huang\",\"doi\":\"10.1007/s11571-024-10208-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory. Furthermore, we explore the system's involvement in stress responses and pain modulation, as well as its developmental changes and susceptibility to stressors. By integrating molecular, electrophysiological, and theoretical modeling approaches, we shed light on the LC-NE system's complex role in the brain's adaptability and its potential relevance to neurological and psychiatric disorders.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"29\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757662/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10208-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10208-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

蓝斑(LC)是大脑中去甲肾上腺素(NE)的主要来源,在调节认知和行为过程中起着核心作用。本文综述了最近的研究结果,以提供对LC-NE系统的全面了解,强调其分子多样性,神经生理特性以及在各种脑功能中的作用。我们讨论了LC神经元的异质性,它们对感觉刺激的不同反应,以及NE对注意力和记忆等认知过程的影响。此外,我们还探讨了该系统在应激反应和疼痛调节中的作用,以及其发育变化和对应激源的易感性。通过整合分子、电生理学和理论建模方法,我们揭示了LC-NE系统在大脑适应性中的复杂作用及其与神经和精神疾病的潜在相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the functional complexity of the locus coeruleus-norepinephrine system: insights from molecular anatomy to neurodynamic modeling.

The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory. Furthermore, we explore the system's involvement in stress responses and pain modulation, as well as its developmental changes and susceptibility to stressors. By integrating molecular, electrophysiological, and theoretical modeling approaches, we shed light on the LC-NE system's complex role in the brain's adaptability and its potential relevance to neurological and psychiatric disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信