Materials Today Electronics最新文献

筛选
英文 中文
Overview of emerging electronics technologies for artificial intelligence: A review
Materials Today Electronics Pub Date : 2025-01-23 DOI: 10.1016/j.mtelec.2025.100136
Peng Gao , Muhammad Adnan
{"title":"Overview of emerging electronics technologies for artificial intelligence: A review","authors":"Peng Gao ,&nbsp;Muhammad Adnan","doi":"10.1016/j.mtelec.2025.100136","DOIUrl":"10.1016/j.mtelec.2025.100136","url":null,"abstract":"<div><div>This paper shows the short- and long-term electronics technologies emerging as the enablers of next-generation AI systems and focuses on rapidly developing technologies with promise toward enabling the new AI revolution, such as neuromorphic, quantum computing and edge AI processors. These technologies are key to improving the computational power, energy efficiency, and scalability required in AI solutions across healthcare, autonomous systems, and better endeavours. Neuromorphic computing works similarly to the brain's neural configuration to build a more energy-efficient AI system by simulating biological functionality, while quantum computing is ubiquitous as the next stage of problem-solving systems in AI and exponentially increases computational speed and functionality. Finally, Edge AI processors play an important role in real-time AI decision-making, especially in environments with limited power and space, as they allow data to be processed at the original point of generation. Of course, although these technologies demonstrate great potential, there are still obstacles to overcome for subtle hardware-software integration, architecture scalability and high energy consumption. This study highlights sustainable hardware design as an essential solution to these challenges, discussing low-power chips, AI accelerators and energy-efficient designs that allow devices to run at scale without performance liabilities. The paper also highlights quantum and neuromorphic computing—which mimics the structure and function of biological brains—as an important focus for overcoming limitations regarding scalability, allowing for novel architectures equipped to deal with the extremely large amounts of data required for future, more advanced AI models. We also discuss how these progressions can facilitate the creation of effective and scalable AI systems that support AI in addressing global challenges like environmental deterioration and resource limitations. Lastly, the paper highlights the importance of ongoing research and innovation in such areas to promote the evolution of AI systems that are resilient, scalable and energy-efficient in a way that ensures the long-term sustainability of AI and its implementation in various domains.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"11 ","pages":"Article 100136"},"PeriodicalIF":0.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-compact magnetoelectric sensor for femto-Tesla VLF signal reception
Materials Today Electronics Pub Date : 2025-01-09 DOI: 10.1016/j.mtelec.2025.100135
Cunzheng Dong , Changxing Sun , Lei Chen , Yifan He , Yisi Liu , Bin Luo , Nian X. Sun
{"title":"Ultra-compact magnetoelectric sensor for femto-Tesla VLF signal reception","authors":"Cunzheng Dong ,&nbsp;Changxing Sun ,&nbsp;Lei Chen ,&nbsp;Yifan He ,&nbsp;Yisi Liu ,&nbsp;Bin Luo ,&nbsp;Nian X. Sun","doi":"10.1016/j.mtelec.2025.100135","DOIUrl":"10.1016/j.mtelec.2025.100135","url":null,"abstract":"<div><div>Very low-frequency (VLF) electromagnetic waves can penetrate dense, conductive media such as earth and saltwater, with minimal attenuation, enabling long-distance signal transmission via ionospheric reflection. These characteristics make VLF ideal for applications in submarine navigation, subterranean mapping, underground communication, and ionospheric remote sensing. Conventional VLF signal reception has relied on magnetic loop antennas due to their low noise performance; however, their large size and reduced sensitivity due to low quality factors (Q) limit their use in portable and compact applications, particularly in underwater and underground environments. To address these challenges, we propose an ultra-compact room-temperature extremely sensitive femto-tesla magnetic sensor based on a strain-mediated high-Q Metglas/Quartz magnetoelectric (ME) resonator operating at its electromechanical resonance (EMR) at 24.55 kHz for VLF signal reception. The Metglas/Quartz ME sensor demonstrates sensitivity and magnetic noise performance enhancement by an order of magnitude compared to conventional Metglas/PZT ME sensors, achieving an ultra-low equivalent magnetic noise level of 5 fT/Hz<sup>1/2</sup>, owing to high magnetic permeability and magnetostriction of Metglas and the high quality factor of Quartz at EMR. Moreover, the Metglas/Quartz ME VLF receiver exhibits overwhelming near-field and far-field VLF signal reception capability, realizing a successful reception of a VLF signal ∼400 km away from the NAA VLF Transmitter Cutler, with a 55 dB signal-to-noise (SNR) ratio. The demonstrated ultra-compact high-Q Metglas/Quartz ME sensor capable of femto-tesla VLF signal reception shows significant improvements in magnetic sensing capability, size, power consumption, and cost compared to traditional magnetic loop antennas, making it a promising solution for portable VLF signal reception in challenging environments.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"11 ","pages":"Article 100135"},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in organic semiconductor crystalline microwire field-effect transistors
Materials Today Electronics Pub Date : 2024-12-27 DOI: 10.1016/j.mtelec.2024.100134
Dao Duy Thanh , Chia-Hsun Nieh , Ting-Yu Wang , Qun-Gao Chen , Wen-Ya Lee , Chu-Chen Chueh
{"title":"Recent advances in organic semiconductor crystalline microwire field-effect transistors","authors":"Dao Duy Thanh ,&nbsp;Chia-Hsun Nieh ,&nbsp;Ting-Yu Wang ,&nbsp;Qun-Gao Chen ,&nbsp;Wen-Ya Lee ,&nbsp;Chu-Chen Chueh","doi":"10.1016/j.mtelec.2024.100134","DOIUrl":"10.1016/j.mtelec.2024.100134","url":null,"abstract":"<div><div>Organic crystal microwires (OCMs) have attracted much attention in the last decade due to their great potential for fabricating high-performance organic field-effect transistors (OFETs) and related applications including circuits, displays, sensors, as well as flexible and wearable devices. OCMs offer a number of advantages, such as long-range ordering, the absence of grain boundaries, low defect density, and flexibility. However, the preparation of tiny-sized, highly crystalline and homogeneous ribbons faces considerable challenges. Therefore, efforts have been made to develop new processing methods to produce high-quality OCMs. This perspective describes recent simple and widely used techniques for the preparation of OCMs, including both dry and wet processes. The advantages and limitations of these different techniques are discussed. In addition, we summarize recent advances in the performance of OCMs-based OFETs, comparing the charge-transporting properties of different preparation methods, including OCMs and thin films. Finally, the potential and future prospects of utilizing crystal microwires in perovskite FETs are also discussed.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"11 ","pages":"Article 100134"},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferroelectric memristors based on double perovskite Bi2FeCoO6 for synaptic performance and human expression recognition storage
Materials Today Electronics Pub Date : 2024-12-12 DOI: 10.1016/j.mtelec.2024.100133
Dong-Ping Yang , Wen-Min Zhong , Jun Li , Xin-Gui Tang , Qi-Jun Sun , Qiu-Xiang Liu , Yan-Ping Jiang
{"title":"Ferroelectric memristors based on double perovskite Bi2FeCoO6 for synaptic performance and human expression recognition storage","authors":"Dong-Ping Yang ,&nbsp;Wen-Min Zhong ,&nbsp;Jun Li ,&nbsp;Xin-Gui Tang ,&nbsp;Qi-Jun Sun ,&nbsp;Qiu-Xiang Liu ,&nbsp;Yan-Ping Jiang","doi":"10.1016/j.mtelec.2024.100133","DOIUrl":"10.1016/j.mtelec.2024.100133","url":null,"abstract":"<div><div>This study reports for the first time the application of double perovskite thin-film devices based on the Bi<sub>2</sub>FeCoO<sub>6</sub> (BFCO) compound in non-volatile ferroelectric memristors. By spin-coating BFCO onto an N-type silicon (N-Si) substrate, a P-N junction was formed, yielding a thin-film device with ferroelectric properties. The device demonstrated a maximum polarization value of 46.09 μC/cm² and a high switching ratio of 293, along with excellent long-term stability (over 7 days) and high repeatability (1000 cycles). Furthermore, we investigated the synaptic characteristics of the device, including short-term plasticity, paired-pulse facilitation, and long-term potentiation/inhibition behaviors. By designing a confusion matrix recognition scenario with a binary neural network, we validated the potential of double perovskite ferroelectric memristors in intelligent learning applications. Additionally, leveraging the synaptic plasticity of the device, we developed a modal storage memory and recognition system for human emotions. This work not only provides new insights into the development of high-performance double perovskite ferroelectric memristors but also lays the foundation for optimizing synaptic performance in intelligent learning applications.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"11 ","pages":"Article 100133"},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contact engineering for two-dimensional van der Waals semiconductors
Materials Today Electronics Pub Date : 2024-12-07 DOI: 10.1016/j.mtelec.2024.100132
Jiachen Tang, Shuaixing Li, Li Zhan, Songlin Li
{"title":"Contact engineering for two-dimensional van der Waals semiconductors","authors":"Jiachen Tang,&nbsp;Shuaixing Li,&nbsp;Li Zhan,&nbsp;Songlin Li","doi":"10.1016/j.mtelec.2024.100132","DOIUrl":"10.1016/j.mtelec.2024.100132","url":null,"abstract":"<div><div>Two-dimensional (2D) semiconductors represent the most promising post-silicon channel materials for ultimate electronics. However, the unique atomic thickness renders them incompatible with traditional atomic doping technique through ion implantation and thermal activation, which poses a key challenge for constructing ohmic contacts with 2D semiconductors. In the last decade, constant efforts have been devoted to address this critical challenge. In this article, by casting light on the origins of contact resistance between electrodes and 2D semiconductors, we review various strategies of contact engineering for 2D van der Waals semiconductors and the steady progress achieved in this specific issue, in order to provide guidance for device design and integration of 2D semiconductors for next-generation electronics.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"11 ","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiconductor sensing surfaces via oxygen-injection treatment
Materials Today Electronics Pub Date : 2024-12-01 DOI: 10.1016/j.mtelec.2024.100120
Xiaowu Wang, Zhenggang Xue, Jiaqiang Xu
{"title":"Semiconductor sensing surfaces via oxygen-injection treatment","authors":"Xiaowu Wang,&nbsp;Zhenggang Xue,&nbsp;Jiaqiang Xu","doi":"10.1016/j.mtelec.2024.100120","DOIUrl":"10.1016/j.mtelec.2024.100120","url":null,"abstract":"","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100120"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanotwinned thermoelectric materials
Materials Today Electronics Pub Date : 2024-12-01 DOI: 10.1016/j.mtelec.2024.100128
Ting-Rui Luo , Yingchao Wei , Zheng Ma , Junyou Yang
{"title":"Nanotwinned thermoelectric materials","authors":"Ting-Rui Luo ,&nbsp;Yingchao Wei ,&nbsp;Zheng Ma ,&nbsp;Junyou Yang","doi":"10.1016/j.mtelec.2024.100128","DOIUrl":"10.1016/j.mtelec.2024.100128","url":null,"abstract":"<div><div>Thermoelectric materials is the key energy conversion unit of thermoelectic module, whose figure of merit <em>ZT</em> determines largely the energy conversion efficiency of thermoelectric modules. Therefore, how to improve the <em>ZT</em> values of thermoelectric materials has become a research focus in thermoelectric community. Recently, nanotwins have attracted great attention in thermoelectric community because of its merits of low carrier scattering, strong phonon scattering, and effective hindering effect on dislocation motion. Theoretical and experimental studies have shown that nanotwins have great potential in improving the thermoelectric properties (i.e., figure of merit <em>ZT</em>) and mechanical properties (e.g., plastic deformation strength, fracture toughness) of thermoeletric materials. Herein, we summary the progress of theoretical and experimental reseach on nanotwinned thermoelectric materials, including bismuth telluride alloys, Cu-Sn-S based semiconductors, InSb semiconductor, constantan based alloys, and high entropy semiconductor, providing feasible reference for nanotwins design of other thermoelectric materials.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100128"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143130216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advancements and challenges in highly stable all-inorganic perovskite solar cells 高稳定性全无机过氧化物太阳能电池的最新进展与挑战
Materials Today Electronics Pub Date : 2024-11-22 DOI: 10.1016/j.mtelec.2024.100127
Sunkyu Kim , Muhammad Adnan , Zobia Irshad, Wonjong Lee, Siwon Yun, Hyeji Han, Jongchul Lim
{"title":"Recent advancements and challenges in highly stable all-inorganic perovskite solar cells","authors":"Sunkyu Kim ,&nbsp;Muhammad Adnan ,&nbsp;Zobia Irshad,&nbsp;Wonjong Lee,&nbsp;Siwon Yun,&nbsp;Hyeji Han,&nbsp;Jongchul Lim","doi":"10.1016/j.mtelec.2024.100127","DOIUrl":"10.1016/j.mtelec.2024.100127","url":null,"abstract":"<div><div>Organic–inorganic perovskite solar cells (PSCs) have attracted significant attention because of their outstanding photoelectric conversion efficiency, simple fabrication process, and long exciton diffusion lengths. In particular, the power conversion efficiency of single-junction PSCs is 26.1%, whereas that of multi-junction silicon/perovskite tandem solar cells reaches an impressive 33.9%, indicating good prospects for the solar cell market. However, traditional organic–inorganic PSCs are highly sensitive to moisture, light, and heat, which negatively affect their stability and thereby commercialization. Nowadays, all-inorganic perovskites are attracting considerable attention for application in solar cells because of their potential to attain high resistance to environmental factors. All-inorganic perovskites have been considered an alternative to organic–inorganic perovskites because of their advantages over organic–inorganic perovskites, such as the capability to stabilize the photoactive phase, long-term thermal stability, and the possibility of tailoring the bandgap structure. Herein, we perform a detailed meta-analysis of materials and approaches used for the preparation of all-inorganic perovskite thin films and discuss recent advancements in key performance parameters such as efficiency, stability, and electrical and optoelectronic properties. Finally, we outline directions for future studies.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherent epitaxy of HfxZr1-xO2 thin films by high-pressure magnetron sputtering 通过高压磁控溅射实现 HfxZr1-xO2 薄膜的相干外延
Materials Today Electronics Pub Date : 2024-11-13 DOI: 10.1016/j.mtelec.2024.100124
Tengteng Zhang , Yuyan Fan , Zhipeng Xue , Mengwei Si , Zhen Wang , Xiuyan Li , Yanwei Cao
{"title":"Coherent epitaxy of HfxZr1-xO2 thin films by high-pressure magnetron sputtering","authors":"Tengteng Zhang ,&nbsp;Yuyan Fan ,&nbsp;Zhipeng Xue ,&nbsp;Mengwei Si ,&nbsp;Zhen Wang ,&nbsp;Xiuyan Li ,&nbsp;Yanwei Cao","doi":"10.1016/j.mtelec.2024.100124","DOIUrl":"10.1016/j.mtelec.2024.100124","url":null,"abstract":"<div><div>Due to remarkable high-k and ferroelectric properties in CMOS devices, the study of crystalline Hf<sub>x</sub>Zr<sub>1-x</sub>O<sub>2</sub> (HZO) thin films has attracted tremendous interest recently. However, up to now, the epitaxial growth of HZO films has only been achieved by pulse laser deposition, a technique scarcely utilized in CMOS devices. Therefore, developing appropriate epitaxial methods of HZO films (such as sputtering) is fairly necessary, but a challenge at present. In this work, high-quality single-crystalline HZO films were synthesized by high-pressure magnetron sputtering. The epitaxial growth of HZO films on yttria-stabilized zirconia (YSZ) substrate was demonstrated by a combination of high-resolution X-ray diffraction, atom force microscope, and scanning transmission electron microscope. In addition, good insulating characteristics were obtained by replacing insulating substrates with conductive substrates as electrodes. Our results provide a novel way for the epitaxial growth of the single-crystalline structure of HZO thin films towards the high performance of high-k and ferroelectric devices.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100124"},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of bilayer ITO/YZO/PMMA/Al memory devices with insight ternary switching mechanism 制造具有三元开关机制的双层 ITO/YZO/PMMA/Al 存储器件
Materials Today Electronics Pub Date : 2024-11-07 DOI: 10.1016/j.mtelec.2024.100125
Anirudh Kumar , Satendra Pal Singh , Sejoon Lee , Sanjeev Kumar Sharma
{"title":"Fabrication of bilayer ITO/YZO/PMMA/Al memory devices with insight ternary switching mechanism","authors":"Anirudh Kumar ,&nbsp;Satendra Pal Singh ,&nbsp;Sejoon Lee ,&nbsp;Sanjeev Kumar Sharma","doi":"10.1016/j.mtelec.2024.100125","DOIUrl":"10.1016/j.mtelec.2024.100125","url":null,"abstract":"<div><div>Two terminal resistive switching memories are emerging candidates for the next generation of non-volatile memory in the upcoming era of artificial intelligence and big data generated globally. Much research is currently focused on developing write-once-read-many-times (WORM) memory devices, which offer the advantages of small size, high speed, improved energy consumption, and large data capacity. Nanostructured organic/inorganic heterojunction composites have garnered significant attention due to their excellent scalability and low-cost fabrication. In the present study, the YZO/PMMA hybrid nanocomposite bilayer ReRAM was fabricated on ITO substrates. The I-V characteristics of the fabricated ITO/YZO/PMMA/Al device exhibited the ternary WORM switching behavior (HRS, LRS1, and LRS2 states). It has been observed that three states of “HRS”, “LRS1” and “LRS2” exhibit a distinct current ratio of LRS1/HRS and LRS2/HRS of 10<sup>1.6</sup> and 10<sup>2.4</sup><sub>,</sub> respectively, with good data retention (up to 500 h). It was demonstrated that Y-dopant concentration into ZnO significantly transits the switching behavior of ITO/ZnO/PMMA/Al memory from binary to ternary WORM switching characteristics. Ohmic conduction and space charge-limited current (SCLC) were observed in the HRS. In LRS1, the Schottky emission mechanism was observed, while in LRS2, Ohmic conduction was observed. The physical model of the formation of permanent conducting filaments (CFs) consisting of oxygen vacancies in the device's active layer is proposed to explain the RS behavior. These findings reveal the low-cost development of high-density, non-volatile memory devices operated with very low power consumption that can be used to protect data against unauthorized software/hardware and hackers.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"10 ","pages":"Article 100125"},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信