Materials Today Electronics最新文献

筛选
英文 中文
Bismuth-based ferroelectric memristive device induced by interface barrier for neuromorphic computing 用于神经形态计算的界面屏障诱导铋基铁电记忆器件
Materials Today Electronics Pub Date : 2024-06-01 DOI: 10.1016/j.mtelec.2024.100105
Zhi-Long Chen, Yang Xiao, Yang-Fan Zheng, Yan-Ping Jiang, Qiu-Xiang Liu, Xin-Gui Tang
{"title":"Bismuth-based ferroelectric memristive device induced by interface barrier for neuromorphic computing","authors":"Zhi-Long Chen,&nbsp;Yang Xiao,&nbsp;Yang-Fan Zheng,&nbsp;Yan-Ping Jiang,&nbsp;Qiu-Xiang Liu,&nbsp;Xin-Gui Tang","doi":"10.1016/j.mtelec.2024.100105","DOIUrl":"10.1016/j.mtelec.2024.100105","url":null,"abstract":"<div><p>The development of the Internet of Things (IoT) not only facilitates our lives but also dramatically grows data. Artificial synaptic devices appear to represent an emerging physical solution compared to the existing computational architectures. Memristive devices are of great interest with their high integration and low power consumption in the field of synaptic devices. In this work, we demonstrate short-term plasticity (STP) and long-term plasticity (LTP) by regulating synaptic weights with different stimulus pulses. Moreover, the application in neuromorphic computing is further exhibited by image recognition with an accuracy of 95.2 % under the modified National Institute of Standards and Technology database. Therefore, Nd-doped Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> memristors, as emerging artificial synaptic devices, are expected to achieve breakthroughs in artificial intelligence and promote the development of neuromorphic computing and intelligent systems.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000172/pdfft?md5=5ce3ce238e78a5135c0d666469eee2eb&pid=1-s2.0-S2772949424000172-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141229968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocellulose/zero, one- and two-dimensional inorganic additive based electrodes for advanced supercapacitors 基于纳米纤维素/零、一维和二维无机添加剂的先进超级电容器电极
Materials Today Electronics Pub Date : 2024-05-15 DOI: 10.1016/j.mtelec.2024.100103
Ashvinder K. Rana , Phil Hart , Vijay Kumar Thakur
{"title":"Nanocellulose/zero, one- and two-dimensional inorganic additive based electrodes for advanced supercapacitors","authors":"Ashvinder K. Rana ,&nbsp;Phil Hart ,&nbsp;Vijay Kumar Thakur","doi":"10.1016/j.mtelec.2024.100103","DOIUrl":"https://doi.org/10.1016/j.mtelec.2024.100103","url":null,"abstract":"<div><p>Nowadays, the growing threat of environmental pollution and the energy crisis have accelerated the advancement of sustainable energy sources and highly efficient energy storage technologies. Supercapacitors' outstanding efficiency and accessibility have attracted much interest in portable electronics. However, compared to other energy storage devices, commercially available supercapacitors offer minimal advantages, and it is also very difficult to balance their electrochemical performance, such as cyclability, energy density, and capacitance. Fabricating high-performance supercapacitors with attractive electrical parameters and flexibility depends on the composition of the electrodes.</p><p>Nanocellulose, which is derived from waste biomass because of its high mechanical strength, strong chemical reactivity, and biodegradability, has been used to integrate 2D, 1D, and zero-dimensional inorganic additive materials to develop a promising material for supercapacitor electrodes. The present review summarises recent advancements in the progress of nanocellulose/2D-, 1D-, and zero-dimensional inorganic material-based composite electrodes for their application in supercapacitors. Different strategies for developing nanocellulose/inorganic additive-based composite electrodes are reviewed, and subsequently, the potential of nanocellulose/multidimensional inorganic additive-based electrodes in supercapacitors is fully elaborated. In the end, current challenges and future directions for the development finally, current challenges and future directions for developing nano cellulose-based nanocomposite electrodes in supercapacitors were also discussed.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000159/pdfft?md5=0aeb3aa2a09d04cb7cb3a9ac7b49a975&pid=1-s2.0-S2772949424000159-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140947279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-linear Hall effects: Mechanisms and materials 非线性霍尔效应:机理与材料
Materials Today Electronics Pub Date : 2024-05-10 DOI: 10.1016/j.mtelec.2024.100101
Arka Bandyopadhyay, Nesta Benno Joseph, Awadhesh Narayan
{"title":"Non-linear Hall effects: Mechanisms and materials","authors":"Arka Bandyopadhyay,&nbsp;Nesta Benno Joseph,&nbsp;Awadhesh Narayan","doi":"10.1016/j.mtelec.2024.100101","DOIUrl":"https://doi.org/10.1016/j.mtelec.2024.100101","url":null,"abstract":"<div><p>This review presents recent breakthroughs in the realm of nonlinear Hall effects, emphasizing central theoretical foundations and recent experimental progress. We elucidate the quantum origin of the second-order Hall response, focusing on the Berry curvature dipole, which may arise in inversion symmetry broken systems. The theoretical framework also reveals the impact of disorder scattering effects on the nonlinear response. We further discuss the possibility of obtaining nonlinear Hall responses beyond the second order. We examine symmetry-based indicators essential for the manifestation of nonlinear Hall effects in time-reversal symmetric crystals, setting the stage for a detailed exploration of theoretical models and candidate materials predicted to exhibit sizable and tunable Berry curvature dipole. We summarize groundbreaking experimental reports on measuring both intrinsic and extrinsic nonlinear Hall effects across diverse material classes. Finally, we highlight some of the other intriguing nonlinear effects, including nonlinear planar Hall, nonlinear anomalous Hall, and nonlinear spin and valley Hall effects. We conclude with an outlook on pivotal open questions and challenges, marking the trajectory of this rapidly evolving field.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000135/pdfft?md5=c8c428c68d1f302a927171e35235b853&pid=1-s2.0-S2772949424000135-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140901468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly flexible and transparent amorphous indium doped tin oxide on bio-compatible polymers for transparent wearable sensors 用于透明可穿戴传感器的生物兼容聚合物上的高柔性透明非晶掺铟氧化锡
Materials Today Electronics Pub Date : 2024-05-07 DOI: 10.1016/j.mtelec.2024.100104
Yu-Kyung Oh , Minchul Sung , Jin Woong Kim , Han-Ki Kim
{"title":"Highly flexible and transparent amorphous indium doped tin oxide on bio-compatible polymers for transparent wearable sensors","authors":"Yu-Kyung Oh ,&nbsp;Minchul Sung ,&nbsp;Jin Woong Kim ,&nbsp;Han-Ki Kim","doi":"10.1016/j.mtelec.2024.100104","DOIUrl":"10.1016/j.mtelec.2024.100104","url":null,"abstract":"<div><p>Highly transparent and flexible amorphous Sn-doped In<sub>2</sub>O<sub>3</sub> (a-ITO) films deposited on flexible and bio-compatible cyclic olefin polymer (COP) substrate using a direct-current magnetron sputtering at room temperature were used as flexible and transparent electrodes for transparent wearable sensors. The figure of merits (FoM) value was calculated to determine the optimal sputtering process for the a-ITO electrodes by varying the direct current power, working pressure, oxygen flow rate, and a-ITO thickness. The optimized a-ITO/COP with a high FoM value of 8.9 exhibited a low sheet resistance of 36 Ohm/square, average transmittances of 89.5 % in the visible wavelength region, and a small critical bending radius of 7 mm, which are acceptable transparent electrodes for fabrication of wearable and transparent wearable sensors. To demonstrate the feasibility of the a-ITO/COP substrate as a promising wearable sensor, we examined the performance of wearable temperature sensors, wearable heaters, and wearable glucose sensors. The successful operation of a-ITO/COP-based temperature sensors with high sensitivity, transparent heaters with a saturation temperature of 87.8 °C at 6 V, and glucose sensors with high sensitivity indicates that a-ITO/COP is a promising bio-compatible electrode for next-generation wearable bionic electronics.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000160/pdfft?md5=7493bf2f6029daacbd15d00c60fe31b9&pid=1-s2.0-S2772949424000160-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141045254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transport studies in piezo-semiconductive ZnO nanotetrapod based electronic devices 基于压电半导体的氧化锌纳米四极管电子器件的传输研究
Materials Today Electronics Pub Date : 2024-04-30 DOI: 10.1016/j.mtelec.2024.100102
Zhiwei Zhang , Morten Willatzen , Yogendra Kumar Mishra , Zhong Lin Wang
{"title":"Transport studies in piezo-semiconductive ZnO nanotetrapod based electronic devices","authors":"Zhiwei Zhang ,&nbsp;Morten Willatzen ,&nbsp;Yogendra Kumar Mishra ,&nbsp;Zhong Lin Wang","doi":"10.1016/j.mtelec.2024.100102","DOIUrl":"https://doi.org/10.1016/j.mtelec.2024.100102","url":null,"abstract":"<div><p>ZnO nanotetrapods (ZnO NTs) with a non-centrosymmetric crystal structure consisting of four 1-D arms interconnected together through a central crystalline core, introduce interesting piezoelectric semiconducting responses in nanorods in the bent state. Considering the widespread applications of nanotetrapods in semiconductor devices, it becomes very crucial to establish a coupled model based on piezoelectric and piezotronic effects to investigate the carrier transport mechanism, which is being reported here in detail for the first time. In this work, we established a multiphysics coupled model of stress-regulated charge carrier transport by the finite element method (FEM), which considers the full account of the wurtzite (WZ) and zinc blende (ZB) regions as well as the spontaneous polarization dependence and the dependence of the material properties on the arm orientation. It is discovered that the forward gain of ZnO NT in the lateral force working mode is almost 50 % higher than that in the nanorod or in the normal force working mode while the reverse current is reduced to negligible. Through the simulation calculations and corresponding analysis, it is confirmed that the developed piezoelectric polarization charges are able to regulate the transport and distribution of carriers in ZnO crystal, which lays a theoretical foundation for the application of piezo-semiconductive ZnO NT devices in advanced technologies.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000147/pdfft?md5=2ebedd9e481331e9ead5e93947b711e5&pid=1-s2.0-S2772949424000147-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140878683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aromatic spacer engineering for 2D halide perovskites and their application in solar cells 二维卤化物包晶的芳香族间隔物工程及其在太阳能电池中的应用
Materials Today Electronics Pub Date : 2024-04-30 DOI: 10.1016/j.mtelec.2024.100100
Yi Shen , Siliang Hu , You Meng , SenPo Yip , Johnny C. Ho
{"title":"Aromatic spacer engineering for 2D halide perovskites and their application in solar cells","authors":"Yi Shen ,&nbsp;Siliang Hu ,&nbsp;You Meng ,&nbsp;SenPo Yip ,&nbsp;Johnny C. Ho","doi":"10.1016/j.mtelec.2024.100100","DOIUrl":"https://doi.org/10.1016/j.mtelec.2024.100100","url":null,"abstract":"<div><p>Perovskites have emerged as a promising new generation of photovoltaic conversion materials, gradually surpassing traditional silicon-based materials in solar cell research. This development is primarily due to their superior power-conversion efficiency (PCE), simple fabrication process, and cost-effective production. However, the low stability of perovskite ionic crystals poses a significant challenge to their stability, hindering the progress of perovskite materials and devices. Although two-dimensional (2D) perovskites offer improved stability, adding organic amine ions results in a quantum confinement effect that reduces the optoelectronic performance of devices. To counter this issue, the strategic design of suitable spacer cations offers a potential solution. Aromatic amine ions possess greater polarity and structural adjustability compared to aliphatic amine ions, making them advantageous in mitigating the quantum confinement effect. This review focuses on phenylethylammonium (PEA) as a representative aromatic spacer cation. It categorizes the evolution of these cations into four trajectories: alkyl chain modification, substitution of hydrogen atoms on the aromatic ring with specific substituents, replacement of benzene rings with aromatic heterocycles, and utilization of multiple aromatic rings instead of a monoaromatic ring. The structure, properties, and corresponding device performance of aromatic spacer cations utilized in reported 2D perovskites are discussed, followed by the presentation of a series of factors for selecting and designing aromatic amine ions for future development.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000123/pdfft?md5=22114eb238124e126c59fed5a00159cd&pid=1-s2.0-S2772949424000123-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140878682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuromorphic optoelectronic devices based on metal halide perovskite 基于金属卤化物包晶的神经形态光电设备
Materials Today Electronics Pub Date : 2024-04-22 DOI: 10.1016/j.mtelec.2024.100099
Qiang Liu , Yiming Yuan , Junchi Liu , Wenbo Wang , Jiaxin Chen , Wentao Xu
{"title":"Neuromorphic optoelectronic devices based on metal halide perovskite","authors":"Qiang Liu ,&nbsp;Yiming Yuan ,&nbsp;Junchi Liu ,&nbsp;Wenbo Wang ,&nbsp;Jiaxin Chen ,&nbsp;Wentao Xu","doi":"10.1016/j.mtelec.2024.100099","DOIUrl":"10.1016/j.mtelec.2024.100099","url":null,"abstract":"<div><p>Neuromorphic electronics has received increased attention for their application in brain-inspired computing and artificial sensorimotor nerves. Metal halide perovskite (MHP) has been proved to be a candidate material for use in optoelectronic neuromorphic devices. Herein, we review on the recent research progress of MHP materials, with the focus on their applications in neuromorphic optoelectronics. First, we review on the MHP materials that are used for optoelectronic devices especially for neuromorphic applications, in the sequence of all-inorganic, organic-inorganic hybrid and lead-free MHP materials. Then, we summarize the design and fabrication of two-terminal (2-T) and three-terminal (3-T) synaptic devices, including working mechanisms as operated by electrical and light inputs, and the relationship between electrical properties with material composition and structure of functional layers. Finally, we review on the applications of these devices on pattern recognition, bionic vision, neuromorphic sensing and modulation, experience and associative learning, logic computing and high-pass filtering. This review aims could potentially inspire future research in the field of neuromorphic optoelectronic electronics.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000111/pdfft?md5=af0465cbab37d185fe7f89f726c66208&pid=1-s2.0-S2772949424000111-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140792636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamical self-rectifying memristors based on halide perovskite nanocrystals 基于卤化物过氧化物纳米晶体的动态自校正忆阻器
Materials Today Electronics Pub Date : 2024-04-16 DOI: 10.1016/j.mtelec.2024.100098
Ziyu He, Yuncheng Mu, Shu Zhou
{"title":"Dynamical self-rectifying memristors based on halide perovskite nanocrystals","authors":"Ziyu He,&nbsp;Yuncheng Mu,&nbsp;Shu Zhou","doi":"10.1016/j.mtelec.2024.100098","DOIUrl":"https://doi.org/10.1016/j.mtelec.2024.100098","url":null,"abstract":"<div><p>The integration of rectifying effects with resistance switching in a self-rectifying memristor offers the opportunity to suppress the sneak current in high-density crossbar arrays for energy-efficient neuromorphic computing. Here, we report a new type of two-terminal self-rectifying memristor that gets rid of asymmetric complex structures by using CsPbBr<sub>3</sub> perovskite nanocrystals (NCs). The simple metal-insulator-metal (Au/CsPbBr<sub>3</sub> NCs/Au) configuration that eases integration exhibits multiple resistance states that can be precisely controlled by the stimulus properties and dynamical rectifying characteristics dependent on both the bias voltage and bias time. We have extended an earlier proposed theory that predicts electric-potential-distribution-controlled rectification to rationalize all the observed rectifying behavior that are regulated by mobile-ion-induced interfacial electrochemical reactions and found excellent agreement between theory and experiments. Our study thus demonstrates the possibility of constructing controllable self-rectifying memristors without involving asymmetric complex structures, paving a new way for resolving the sneak current issue in crossbar arrays of memristors.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277294942400010X/pdfft?md5=389eb94bd59a27eadeebbfe9e80195d6&pid=1-s2.0-S277294942400010X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understand two-dimensional perovskite nanosheets from individual and collective perspectives 从个人和集体角度了解二维过氧化物纳米片
Materials Today Electronics Pub Date : 2024-04-04 DOI: 10.1016/j.mtelec.2024.100097
Jianing Duan, Hanlin Cen, Jinfei Dai, Zhaoxin Wu, Jun Xi
{"title":"Understand two-dimensional perovskite nanosheets from individual and collective perspectives","authors":"Jianing Duan,&nbsp;Hanlin Cen,&nbsp;Jinfei Dai,&nbsp;Zhaoxin Wu,&nbsp;Jun Xi","doi":"10.1016/j.mtelec.2024.100097","DOIUrl":"https://doi.org/10.1016/j.mtelec.2024.100097","url":null,"abstract":"<div><p>Two-dimensional (2D) perovskite nanosheets have attracted great attention in recent years due to their unique morphological advantages and high qualifications in constructing miniature optoelectronic devices. However, there remains unexplored aspects regarding the structural evolution during spacer decoupling in nanosheet formation and the recoupling process in heterostructure assembly, which limits the understanding of the nanosheet structure-property relationship. Here, based on the advances and limitations of nanosheet preparations, we recommend further optimization of the synthesis method to achieve quality and prosperity for the whole family (including quasi-2D and Dion-Jacobson phases). Due to structural relaxation stem from extreme reduction of thickness, we propose to explore the microstructural evolution of 2D perovskite nanosheets, e.g. through high-resolution microscopy and spring-mass modeling to understand the different lattice arrangements and vibrational modes of nanosheets compared to bulk materials. Finally, we discuss the preparation and application of heterostructures based on 2D perovskite nanosheets and emphasize the structural rearrangement during van der Waals interface assembly in heterostructures. We hope this work will improve researcher's understanding of structure-property relationship of 2D perovskite nanosheets and accelerate research progress in this field.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000093/pdfft?md5=c25d5143ddbad73dbca76153c83c40b7&pid=1-s2.0-S2772949424000093-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140536899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative study on 2D materials with native high-κ oxides for sub-10 nm transistors 用于 10 纳米以下晶体管的具有原生高κ氧化物的二维材料比较研究
Materials Today Electronics Pub Date : 2024-03-30 DOI: 10.1016/j.mtelec.2024.100096
Mayuri Sritharan, Robert K.A. Bennett , Manasa Kaniselvan, Youngki Yoon
{"title":"A comparative study on 2D materials with native high-κ oxides for sub-10 nm transistors","authors":"Mayuri Sritharan,&nbsp;Robert K.A. Bennett ,&nbsp;Manasa Kaniselvan,&nbsp;Youngki Yoon","doi":"10.1016/j.mtelec.2024.100096","DOIUrl":"https://doi.org/10.1016/j.mtelec.2024.100096","url":null,"abstract":"<div><p>Two-dimensional (2D) transition metal dichalcogenides (TMDs) with native high-<span><math><mi>κ</mi></math></span> oxides have presented a new avenue towards the development of next-generation ultra-scaled field-effect transistors (FETs). These materials have been experimentally shown to form a natively compatible oxide layer with a high dielectric constant, which can help scale down both the transistor size and the supply voltage. We present a material and device performance study into the use of several of these materials – namely HfS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, HfSe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, ZrS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, ZrSe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> – as channels in sub-10 nm FETs. All four materials exhibit isotropic transport at 10 nm channel length with ON currents over 1000 <span><math><mi>μ</mi></math></span>A/<span><math><mi>μ</mi></math></span>m but show anisotropic transport and degraded ON currents at 5 nm channel length. In general, the sulfide family excels in terms of subthreshold characteristics at sub-10 nm channel lengths. HfS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, in particular, surpasses all the other materials in terms of ON currents and subthreshold swing (SS), allowing it to also achieve excellent intrinsic performance. We have identified HfS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> as a superior material within this TMD family for sub-10 nm FETs.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772949424000081/pdfft?md5=a979c6ee2c56af0519ac1f51f526e30a&pid=1-s2.0-S2772949424000081-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信