利用铅笔绘制技术在棉织物上快速制作柔性镀铜电路板和纺织材料导电线

Vinit Srivastava , Shivam Dubey , Rahul Vaish , Bharat Singh Rajpurohit
{"title":"利用铅笔绘制技术在棉织物上快速制作柔性镀铜电路板和纺织材料导电线","authors":"Vinit Srivastava ,&nbsp;Shivam Dubey ,&nbsp;Rahul Vaish ,&nbsp;Bharat Singh Rajpurohit","doi":"10.1016/j.mtelec.2025.100141","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an approach for fabricating flexible and stable electroplated circuits directly onto fabric and thread. We achieve this through a simple method. Pencil-drawn patterns on cotton fabric are followed by copper electroplating in a copper sulfate solution. This method eliminates the need for complex pre-treatment and lithography techniques, thus enabling rapid and on-site circuit development. This research investigated the influence of different pencil grades, drawing frequency, and plating time on the overall conductivity and flexibility of the fabric-based circuits. The electroplated copper demonstrated exceptional bending and thermal stability, maintaining consistent conductivity over a wide bending range (-180° to 180°), with minimal linear resistance change after extreme twisting. Furthermore, the fabricated circuits functioned effectively as Light Dependent Resistor (LDR) based Plated Circuit Boards (PCB), demonstrating robustness and practical potential. The fabrication of conductive threads has also been explored by electroplating graphite threads. These threads displayed remarkable flexibility, maintaining consistent conductivity (0.5 Ω/cm) even under tight knots. The copper-plated textile exhibited stable resistance: 0.6 Ω across 22 °C to 55 °C and 0.5 Ω/cm under bending angles from -180° to +180°. It endured 1000 folding cycles, with resistance increasing slightly to 1.3 Ω. Furthermore, this work shows that the flexible PCBs are resistant to folding stress, environmentally friendly, and disposable, which is a significant step toward sustainable electronics. The results of this study hold significant potential applications in textile-based electrical systems, wearable electronics, and sensors.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"11 ","pages":"Article 100141"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid fabrication of flexible copper-plated circuit boards on cotton fabrics and conductive threads for textile materials using pencil-drawn technique\",\"authors\":\"Vinit Srivastava ,&nbsp;Shivam Dubey ,&nbsp;Rahul Vaish ,&nbsp;Bharat Singh Rajpurohit\",\"doi\":\"10.1016/j.mtelec.2025.100141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an approach for fabricating flexible and stable electroplated circuits directly onto fabric and thread. We achieve this through a simple method. Pencil-drawn patterns on cotton fabric are followed by copper electroplating in a copper sulfate solution. This method eliminates the need for complex pre-treatment and lithography techniques, thus enabling rapid and on-site circuit development. This research investigated the influence of different pencil grades, drawing frequency, and plating time on the overall conductivity and flexibility of the fabric-based circuits. The electroplated copper demonstrated exceptional bending and thermal stability, maintaining consistent conductivity over a wide bending range (-180° to 180°), with minimal linear resistance change after extreme twisting. Furthermore, the fabricated circuits functioned effectively as Light Dependent Resistor (LDR) based Plated Circuit Boards (PCB), demonstrating robustness and practical potential. The fabrication of conductive threads has also been explored by electroplating graphite threads. These threads displayed remarkable flexibility, maintaining consistent conductivity (0.5 Ω/cm) even under tight knots. The copper-plated textile exhibited stable resistance: 0.6 Ω across 22 °C to 55 °C and 0.5 Ω/cm under bending angles from -180° to +180°. It endured 1000 folding cycles, with resistance increasing slightly to 1.3 Ω. Furthermore, this work shows that the flexible PCBs are resistant to folding stress, environmentally friendly, and disposable, which is a significant step toward sustainable electronics. The results of this study hold significant potential applications in textile-based electrical systems, wearable electronics, and sensors.</div></div>\",\"PeriodicalId\":100893,\"journal\":{\"name\":\"Materials Today Electronics\",\"volume\":\"11 \",\"pages\":\"Article 100141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772949425000075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949425000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid fabrication of flexible copper-plated circuit boards on cotton fabrics and conductive threads for textile materials using pencil-drawn technique

Rapid fabrication of flexible copper-plated circuit boards on cotton fabrics and conductive threads for textile materials using pencil-drawn technique
This study presents an approach for fabricating flexible and stable electroplated circuits directly onto fabric and thread. We achieve this through a simple method. Pencil-drawn patterns on cotton fabric are followed by copper electroplating in a copper sulfate solution. This method eliminates the need for complex pre-treatment and lithography techniques, thus enabling rapid and on-site circuit development. This research investigated the influence of different pencil grades, drawing frequency, and plating time on the overall conductivity and flexibility of the fabric-based circuits. The electroplated copper demonstrated exceptional bending and thermal stability, maintaining consistent conductivity over a wide bending range (-180° to 180°), with minimal linear resistance change after extreme twisting. Furthermore, the fabricated circuits functioned effectively as Light Dependent Resistor (LDR) based Plated Circuit Boards (PCB), demonstrating robustness and practical potential. The fabrication of conductive threads has also been explored by electroplating graphite threads. These threads displayed remarkable flexibility, maintaining consistent conductivity (0.5 Ω/cm) even under tight knots. The copper-plated textile exhibited stable resistance: 0.6 Ω across 22 °C to 55 °C and 0.5 Ω/cm under bending angles from -180° to +180°. It endured 1000 folding cycles, with resistance increasing slightly to 1.3 Ω. Furthermore, this work shows that the flexible PCBs are resistant to folding stress, environmentally friendly, and disposable, which is a significant step toward sustainable electronics. The results of this study hold significant potential applications in textile-based electrical systems, wearable electronics, and sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信