Advanced refractive index sensing through ultra-short pulse compression in hollow core photonic crystal fiber

Sheikh Montasir Mahbub, Abdullah Al Mahmud Nafiz, Rakibul Hasan Sagor
{"title":"Advanced refractive index sensing through ultra-short pulse compression in hollow core photonic crystal fiber","authors":"Sheikh Montasir Mahbub,&nbsp;Abdullah Al Mahmud Nafiz,&nbsp;Rakibul Hasan Sagor","doi":"10.1016/j.mtelec.2025.100137","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript investigates the propagation of ultra-short pulses through hollow-core photonic crystal fibers (HC-PCF) and explores their application as high-sensitivity refractive index sensors. The unique guiding properties of HC-PCFs, combined with the ability to confine light within the hollow core, enable enhanced light-matter interactions. When exposed to intense light, these interactions can demonstrate nonlinear optical phenomena, such as pulse compression, which has been utilized here as a tool for detecting changes in refractive index. The HC-PCF has been designed to allow testing materials with refractive indices ranging from 1.4 to 1.45 to be placed in the core, where ultra-short pulses centered at 1550 nm with a duration of 1 picosecond and an input power of 1 KW, are sent from one end to leverage the nonlinear optical properties. By leveraging these nonlinear phenomena, it has been demonstrated that HC-PCFs exhibit unique attributes when the testing materials inside the core have varying refractive indices. Employing this novel technique, unique compression sensitivity and significant power upsurges have been achieved for the materials under test (MUT) with different refractive indices. Unlike the refractive index sensing methods in practice, this novel technique works based on lesser detection parameters and offers improved sensitivity and selectivity. The proposed method has achieved a minimum sensitivity of 11.6 %, which means the pulse is compressed by a factor of nine, and the maximum power surge recorded is 2313.918 W. This innovative approach opens new avenues for developing advanced sensing systems using HC-PCFs in fields such as environmental monitoring, bio-sensing, and chemical detection.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"11 ","pages":"Article 100137"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949425000038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript investigates the propagation of ultra-short pulses through hollow-core photonic crystal fibers (HC-PCF) and explores their application as high-sensitivity refractive index sensors. The unique guiding properties of HC-PCFs, combined with the ability to confine light within the hollow core, enable enhanced light-matter interactions. When exposed to intense light, these interactions can demonstrate nonlinear optical phenomena, such as pulse compression, which has been utilized here as a tool for detecting changes in refractive index. The HC-PCF has been designed to allow testing materials with refractive indices ranging from 1.4 to 1.45 to be placed in the core, where ultra-short pulses centered at 1550 nm with a duration of 1 picosecond and an input power of 1 KW, are sent from one end to leverage the nonlinear optical properties. By leveraging these nonlinear phenomena, it has been demonstrated that HC-PCFs exhibit unique attributes when the testing materials inside the core have varying refractive indices. Employing this novel technique, unique compression sensitivity and significant power upsurges have been achieved for the materials under test (MUT) with different refractive indices. Unlike the refractive index sensing methods in practice, this novel technique works based on lesser detection parameters and offers improved sensitivity and selectivity. The proposed method has achieved a minimum sensitivity of 11.6 %, which means the pulse is compressed by a factor of nine, and the maximum power surge recorded is 2313.918 W. This innovative approach opens new avenues for developing advanced sensing systems using HC-PCFs in fields such as environmental monitoring, bio-sensing, and chemical detection.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信