Graphene metasurfaces: Advances in lens applications, design strategies, and fabrication techniques

Meisam Esfandiari, Xiaojing Lv, Shaghayegh Chamani, Yang Yang
{"title":"Graphene metasurfaces: Advances in lens applications, design strategies, and fabrication techniques","authors":"Meisam Esfandiari,&nbsp;Xiaojing Lv,&nbsp;Shaghayegh Chamani,&nbsp;Yang Yang","doi":"10.1016/j.mtelec.2025.100140","DOIUrl":null,"url":null,"abstract":"<div><div>This review comprehensively examines the recent advancements in graphene-based metasurface lenses, shedding light on their innovative design principles, advanced manufacturing techniques, and superior optical properties. Graphene's exceptional electrical, mechanical, and optical characteristics, combined with the versatile functionality of metamaterials and metasurfaces, have led to the development of highly efficient and dynamic lens systems. These lenses demonstrate remarkable capabilities, including tunable focal lengths, enhanced light modulation, and improved photodetection sensitivity. Such properties render them highly suitable for transformative applications in diverse fields like high-resolution imaging, precision sensing, and next-generation telecommunications. The review provides an in-depth analysis of the state-of-the-art methods used in the fabrication of these lenses, such as chemical vapor deposition, advanced lithography, and nanomanufacturing, to achieve nanoscale precision and functional integration. Moreover, the challenges associated with large-scale production scalability, fabrication techniques' complexity, and graphene's long-term stability under varying environmental conditions are critically examined. In exploring these aspects, the review identifies key directions for future research, emphasizing the need for interdisciplinary collaboration to overcome current limitations. By addressing these challenges and leveraging advancements in material science and nanotechnology, graphene-based metasurface lenses have the potential to revolutionize the future of optical lens systems and photonic technologies.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"11 ","pages":"Article 100140"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949425000063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This review comprehensively examines the recent advancements in graphene-based metasurface lenses, shedding light on their innovative design principles, advanced manufacturing techniques, and superior optical properties. Graphene's exceptional electrical, mechanical, and optical characteristics, combined with the versatile functionality of metamaterials and metasurfaces, have led to the development of highly efficient and dynamic lens systems. These lenses demonstrate remarkable capabilities, including tunable focal lengths, enhanced light modulation, and improved photodetection sensitivity. Such properties render them highly suitable for transformative applications in diverse fields like high-resolution imaging, precision sensing, and next-generation telecommunications. The review provides an in-depth analysis of the state-of-the-art methods used in the fabrication of these lenses, such as chemical vapor deposition, advanced lithography, and nanomanufacturing, to achieve nanoscale precision and functional integration. Moreover, the challenges associated with large-scale production scalability, fabrication techniques' complexity, and graphene's long-term stability under varying environmental conditions are critically examined. In exploring these aspects, the review identifies key directions for future research, emphasizing the need for interdisciplinary collaboration to overcome current limitations. By addressing these challenges and leveraging advancements in material science and nanotechnology, graphene-based metasurface lenses have the potential to revolutionize the future of optical lens systems and photonic technologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信