ChipPub Date : 2024-02-27DOI: 10.1016/j.chip.2024.100087
Zifan Hao , Kai Zou , Yun Meng , Jun-Yong Yan , Fangyuan Li , Yongheng Huo , Chao-Yuan Jin , Feng Liu , Thomas Descamps , Adrian Iovan , Val Zwiller , Xiaolong Hu
{"title":"High-performance eight-channel system with fractal superconducting nanowire single-photon detectors","authors":"Zifan Hao , Kai Zou , Yun Meng , Jun-Yong Yan , Fangyuan Li , Yongheng Huo , Chao-Yuan Jin , Feng Liu , Thomas Descamps , Adrian Iovan , Val Zwiller , Xiaolong Hu","doi":"10.1016/j.chip.2024.100087","DOIUrl":"10.1016/j.chip.2024.100087","url":null,"abstract":"<div><p>Superconducting nanowire single-photon detectors (SNSPDs) have become a mainstream photon-counting technology that has been widely applied in various scenarios. So far, most multi-channel SNSPD systems, either reported in literature or commercially available, are polarization sensitive, that is, the system detection efficiency (SDE) of each channel is dependent on the state of polarization of the to-be-detected photons. Here, we reported an eight-channel system with fractal SNSPDs working in the wavelength range of 930 to 940 nm, which are all featured with low polarization sensitivity. In a close-cycled Gifford-McMahon cryocooler system with the base temperature of 2.2 K, we installed and compared the performance of two types of devices: (1) SNSPD, composed of a single, continuous nanowire and (2) superconducting nanowire avalanche photodetector (SNAP), composed of 16 cascaded units of two nanowires electrically connected in parallel. The highest SDE among the eight channels reaches <span><math><mrow><msubsup><mn>96</mn><mrow><mo>−</mo><mn>5</mn></mrow><mrow><mo>+</mo><mn>4</mn></mrow></msubsup></mrow></math></span>%, with the polarization sensitivity of 1.02 and a dark-count rate of 13 counts per second. The average SDE for eight channels for all states of polarization is estimated to be 90 ± 5%. It is concluded that both the SNSPDs and the SNAPs can reach saturated, high SDE at the wavelength of interest, and the SNSPDs show lower dark-count (false-count) rates, whereas the SNAPs show better properties in the time domain. With the adoption of this system, we showcased the measurements of the second-order photon-correlation functions of light emission from a single-photon source based on a semiconductor quantum dot and from a pulsed laser. It is believed that this work will provide new choices of systems with single-photon detectors combining the merits of high SDE, low polarization sensitivity, and low noise that can be tailored for different applications.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 2","pages":"Article 100087"},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000054/pdfft?md5=a543b773159064080ca4b185f287073a&pid=1-s2.0-S2709472324000054-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChipPub Date : 2024-02-01DOI: 10.1016/j.chip.2024.100086
Fan Yang , Zhaorui Liu , Xumin Ding , Yang Li , Cong Wang , Guozhen Shen
{"title":"Carbon-based memristors for resistive random access memory and neuromorphic applications","authors":"Fan Yang , Zhaorui Liu , Xumin Ding , Yang Li , Cong Wang , Guozhen Shen","doi":"10.1016/j.chip.2024.100086","DOIUrl":"10.1016/j.chip.2024.100086","url":null,"abstract":"<div><p>As a typical representative of nanomaterials, carbon nanomaterials have attracted widespread attention in the construction of electronic devices owing to their unique physical and chemical properties, multi-dimensionality, multi-hybridization methods, and excellent electronic properties. Especially in the recent years, memristors based on carbon nanomaterials have flourished in the field of building non-volatile memory devices and neuromorphic applications. In the current work, the preparation methods and structural characteristics of carbon nanomaterials of different dimensions were systematically reviewed. Afterwards, in depth discussion on the structural characteristics and working mechanism of memristors based on carbon nanomaterials of different dimensions was conducted. Finally, the potential applications of carbon-based memristors in logic operations, neural network construction, artificial vision systems, artificial tactile systems, and multimodal perception systems were also introduced. It is believed that this paper will provide guidance for the future development of high-quality information storage, high-performance neuromorphic applications, and high-sensitivity bionic sensing based on carbon-based memristors.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 2","pages":"Article 100086"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000042/pdfft?md5=01be163da3ae9d5a07af2d3956630a3a&pid=1-s2.0-S2709472324000042-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139678113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChipPub Date : 2024-01-17DOI: 10.1016/j.chip.2024.100083
Xu Jing , Cheng Qian , Xiaodong Zheng , Hu Nian , Chenquan Wang , Jie Tang , Xiaowen Gu , Yuechan Kong , Tangsheng Chen , Yichen Liu , Chong Sheng , Dong Jiang , Bin Niu , Liangliang Lu
{"title":"Coexistence of multiuser entanglement distribution and classical light in optical fiber network with a semiconductor chip","authors":"Xu Jing , Cheng Qian , Xiaodong Zheng , Hu Nian , Chenquan Wang , Jie Tang , Xiaowen Gu , Yuechan Kong , Tangsheng Chen , Yichen Liu , Chong Sheng , Dong Jiang , Bin Niu , Liangliang Lu","doi":"10.1016/j.chip.2024.100083","DOIUrl":"10.1016/j.chip.2024.100083","url":null,"abstract":"<div><p><strong>Building communication links among multiple users in a scalable and robust way is a key objective in achieving</strong> <strong>large-scale</strong> <strong>quantum networks. In</strong> <strong>a</strong> <strong>realistic scenario, noise from the coexisting classical light is inevitable and can ultimately disrupt the entanglement. The previous significant fully connected multiuser entanglement distribution experiments are conducted using dark fiber links</strong><strong>,</strong> <strong>and there is no explicit relation between the entanglement degradations induced by classical noise and its error rate. Here</strong><strong>,</strong> <strong>a semiconductor chip with a high</strong> <strong>figure-of-merit</strong> <strong>modal overlap</strong> <strong>is fabricated</strong> <strong>to directly generate broadband polarization entanglement.</strong> <strong>The</strong> <strong>m</strong><strong>onolithic source maintains</strong> <strong>the</strong> <strong>polarization</strong> <strong>entanglement fidelity</strong> <strong>of</strong> <strong>above 96% for 42 nm bandwidth</strong><strong>,</strong> <strong>with a brightness of 1.2 × 10</strong><sup><strong>7</strong></sup> <strong>Hz mW</strong><sup><strong>−1</strong></sup><strong>.</strong> <strong>A</strong> <strong>continuously working quantum entanglement distribution</strong> <strong>are performed</strong> <strong>among three users coexisting with classical light. Under</strong> <strong>finite-key</strong> <strong>analysis,</strong> <strong>secure keys</strong> <strong>are established</strong> <strong>and</strong> <strong>images encryption</strong> <strong>are enabled</strong> <strong>as well as quantum secret sharing between users.</strong> <strong>This</strong> <strong>work paves the way for practical multiparty quantum communication with integrated photonic architecture compatible with</strong> <strong>real-world</strong> <strong>fiber optical communication network.</strong></p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 2","pages":"Article 100083"},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000017/pdfft?md5=e5b68fc97cc379307475a2b6b95af66a&pid=1-s2.0-S2709472324000017-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139483531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cryo-CMOS modeling and a 600 MHz cryogenic clock generator for quantum computing applications","authors":"Qiwen Xue , Yuanke Zhang , Mingjie Wen , Xiaohu Zhai , Yuefeng Chen , Tengteng Lu , Chao Luo , Guoping Guo","doi":"10.1016/j.chip.2023.100065","DOIUrl":"10.1016/j.chip.2023.100065","url":null,"abstract":"<div><p><strong>The development of large-scale quantum computing has boosted an urgent desire for the advancement of cryogenic CMOS (cryo-CMOS), which is a promising scalable solution for the control and read-out interface of quantum bits. In the current work, 180 nm CMOS transistors were characterized and modeled down to 4 K, and the impact of low-temperature transistor performance variations on circuit design was also analyzed. Based on the proposed cryogenic model, a 180 nm CMOS-based 450 to 850 MHz clock generator operating at 4 K for quantum computing applications was presented. At the output frequency of 600 MHz, it achieved < 4.8 ps RMS jitter with 30 mW power consumption (with test buffer), corresponding to a</strong> −<strong>211.6 dB jitter-power FOM, which is suitable for providing a stable clock signal for the control and readout electronics of scalable quantum computers.</strong></p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 4","pages":"Article 100065"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S270947232300028X/pdfft?md5=f1b8f87045e01a388aab76b0d2867317&pid=1-s2.0-S270947232300028X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73303727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChipPub Date : 2023-12-01DOI: 10.1016/j.chip.2023.100058
Kai Yang , Chenggong He , Jiming Fang , Xinhui Cui , Haiding Sun , Yansong Yang , Chengjie Zuo
{"title":"Advanced RF filters for wireless communications","authors":"Kai Yang , Chenggong He , Jiming Fang , Xinhui Cui , Haiding Sun , Yansong Yang , Chengjie Zuo","doi":"10.1016/j.chip.2023.100058","DOIUrl":"10.1016/j.chip.2023.100058","url":null,"abstract":"<div><p><strong>This paper provides a comprehensive review of advanced radio frequency (RF) filter technologies available in miniature chip or integrated circuit (IC) form for wireless communication applications. The RF filter technologies were organized according to the timeline of their introduction, in conjunction with each generation of wireless (cellular) communication standards (1G to 5G). This approach enabled a clear explanation of the corresponding invention history, working principles, typical applications and future development trends. The article covered commercially successful acoustic filter technologies, including the widely used surface acoustic wave (SAW) and bulk acoustic wave (BAW) filters, as well as electromagnetic filter technologies based on low-temperature co-fired ceramic (LTCC) and integrated passive device (IPD). Additionally, emerging filter technologies such as IHP-SAW, suspended thin-film lithium niobate (LiNbO</strong><sub><strong>3</strong></sub> <strong>or LN) resonant devices and hybrid were also discussed. In order to achieve higher performance, smaller form factor and lower cost for the wireless communication industry, it is believed that fundamental breakthroughs in materials and fabrication techniques are necessary for the future development of RF filters.</strong></p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 4","pages":"Article 100058"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472323000217/pdfft?md5=fd55490793b0bfb9df7f5a758af084da&pid=1-s2.0-S2709472323000217-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88380217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChipPub Date : 2023-12-01DOI: 10.1016/j.chip.2023.100071
Chao Xin , Yaohui Yin , Bingqian Song , Zhen Fan , Yongli Song , Feng Pan
{"title":"Machine learning-accelerated discovery of novel 2D ferromagnetic materials with strong magnetization","authors":"Chao Xin , Yaohui Yin , Bingqian Song , Zhen Fan , Yongli Song , Feng Pan","doi":"10.1016/j.chip.2023.100071","DOIUrl":"10.1016/j.chip.2023.100071","url":null,"abstract":"<div><p>Two-dimensional ferromagnetic (2DFM) semiconductors (metals, half-metals, and so on) are important materials for next-generation nano-electronic and nano-spintronic devices. However, these kinds of materials remain scarce, “trial and error” experiments and calculations are both time-consuming and expensive. In the present work, in order to obtain the optimal 2DFM materials with strong magnetization, a machine learning (ML) framework was established to search the 2D material space containing over 2417 samples and identified 615 compounds whose magnetic orders were then determined via high-throughput first-principles calculations. With the adoption of ML algorithms, two classification models and a regression model were trained. The interpretability of the regression model was evaluated through Shapley Additive exPlanations (SHAP) analysis. Unexpectedly, it is found that Cr<sub>2</sub>NF<sub>2</sub> is a potential antiferromagnetic ferroelectric 2D multiferroic material. More importantly, 60 novel 2DFM candidates were predicted, and among them, 13 candidates have magnetic moments of > 7<em>μ</em><sub>B</sub>. Os<sub>2</sub>Cl<sub>8</sub>, Fe<sub>3</sub>GeSe<sub>2</sub>, and Mn<sub>4</sub>N<sub>3</sub>S<sub>2</sub> were predicted to be novel 2DFM semiconductors, metals, and half-metals, respectively. With the adoption of the ML approach in the current work, the prediction of 2DFM materials with strong magnetization can be accelerated, and the computation time can be drastically reduced by more than one order of magnitude.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 4","pages":"Article 100071"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472323000345/pdfft?md5=bf5d444199bcaf2e9ba06bbd879b31e2&pid=1-s2.0-S2709472323000345-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135762739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChipPub Date : 2023-12-01DOI: 10.1016/j.chip.2023.100066
Zhen-Nan Tian , Feng Yu , Xu-Lin Zhang , Kai Ming Lau , Li-Cheng Wang , Jensen Li , C.T. Chan , Qi-Dai Chen
{"title":"On-chip single-photon chirality encircling exceptional points","authors":"Zhen-Nan Tian , Feng Yu , Xu-Lin Zhang , Kai Ming Lau , Li-Cheng Wang , Jensen Li , C.T. Chan , Qi-Dai Chen","doi":"10.1016/j.chip.2023.100066","DOIUrl":"10.1016/j.chip.2023.100066","url":null,"abstract":"<div><p>Exceptional points (EPs), which are typically defined as the degeneracy points of a non-Hermitian Hamiltonian, have been investigated in various physical systems such as photonic systems. In particular, the intriguing topological structures around EPs have given rise to novel strategies for manipulating photons and the underlying mechanism is especially useful for on-chip photonic applications. Although some on-chip experiments with the adoption of lasers have been reported, EP-based photonic chips working in the quantum regime largely remain elusive. In the current work, a single-photon experiment was proposed to dynamically encircle an EP in on-chip photonic waveguides possessing passive anti-parity-time symmetry. Photon coincidences measurement reveals a chiral feature of transporting single photons, which can act as a building block for on-chip quantum devices that require asymmetric transmissions. The findings in the current work pave the way for on-chip experimental study on the physics of EPs as well as inspiring applications for on-chip non-Hermitian quantum devices.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 4","pages":"Article 100066"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472323000291/pdfft?md5=585250416abe0e1c58bab1eb00c561ef&pid=1-s2.0-S2709472323000291-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76315801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChipPub Date : 2023-12-01DOI: 10.1016/j.chip.2023.100072
Saravanan Yuvaraja, Vishal Khandelwal, Xiao Tang, Xiaohang Li
{"title":"Wide bandgap semiconductor-based integrated circuits","authors":"Saravanan Yuvaraja, Vishal Khandelwal, Xiao Tang, Xiaohang Li","doi":"10.1016/j.chip.2023.100072","DOIUrl":"10.1016/j.chip.2023.100072","url":null,"abstract":"<div><p><strong>Wide-bandgap semiconductors</strong> <strong>exhibit</strong> <strong>much larger energy bandgaps</strong> <strong>than</strong> <strong>traditional semiconductors such as silicon, rendering them very promising</strong> <strong>to be applied</strong> <strong>in the fields of electronics and optoelectronics. Prominent examples of semiconductors include SiC, GaN, ZnO, and diamond, which exhibit distinctive characteristics such as elevated mobility and thermal conductivity. These characteristics facilitate the operation of a wide range of devices, including</strong> <strong>energy-efficient</strong> <strong>bipolar junction transistors (BJTs) and</strong> <strong>metal-oxide-semiconductor</strong> <strong>field-effect transistors (MOSFETs), as well as</strong> <strong>high-frequency</strong> <strong>high-electron-mobility transistors (HEMTs) and optoelectronic components such as</strong> <strong>light-emitting</strong> <strong>diodes (LEDs) and lasers. These semiconductors are used in building integrated circuits (ICs) to facilitate the operation of power electronics, computer devices, RF systems, and other optoelectronic advancements. These breakthroughs include various applications such as imaging, optical communication, and sensing. Among them, the field of power electronics has</strong> <strong>witnessed</strong> <strong>tremendous progress in recent years with the development of wide bandgap (WBG) semiconductor devices</strong><strong>,</strong> <strong>which is</strong> <strong>capable of switching large currents and voltages rapidly with low losses. However,</strong> <strong>it has been proven challenging</strong> <strong>to</strong> <strong>integrat</strong><strong>e</strong> <strong>these devices with silicon complementary metal oxide semiconductor (CMOS) logic circuits required for complex control functions</strong><strong>. The monolithic integration of silicon CMOS with WBG devices increases the complexity of fabricating monolithically integrated smart integrated circuits (ICs). This review article proposes implementing CMOS logic directly on the WBG platform as a solution. However, achieving the CMOS functionalities</strong> <strong>with the adoption of</strong> <strong>WBG materials</strong> <strong>still remains</strong> <strong>a significant hurdle. This article summarizes the research progress in the fabrication of integrated circuits</strong> <strong>adopting</strong> <strong>various WBG materials ranging from SiC to diamond, with the goal of building future smart power ICs.</strong></p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 4","pages":"Article 100072"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472323000357/pdfft?md5=7d663859d62e803c93dc1d5e15b9f3c9&pid=1-s2.0-S2709472323000357-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135762974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChipPub Date : 2023-12-01DOI: 10.1016/j.chip.2023.100068
L. Le Guevel , G. Billiot , S. De Franceschi , A. Morel , X. Jehl , A.G.M. Jansen , G. Pillonnet
{"title":"Impedancemetry of multiplexed quantum devices using an on-chip cryogenic complementary metal-oxide-semiconductor active inductor","authors":"L. Le Guevel , G. Billiot , S. De Franceschi , A. Morel , X. Jehl , A.G.M. Jansen , G. Pillonnet","doi":"10.1016/j.chip.2023.100068","DOIUrl":"10.1016/j.chip.2023.100068","url":null,"abstract":"<div><p>In the pursuit for scalable quantum processors, significant effort has been devoted to the development of cryogenic classical hardware for the control and readout of a growing number of qubits. The current work presented a novel approach called impedancemetry that is suitable for measuring the quantum capacitance of semiconductor qubits connected to a resonant LC-circuit. The impedancemetry circuit exploits the integration of a complementary metal-oxide-semiconductor (CMOS) active inductor in the resonator with tunable resonance frequency and quality factor, enabling the optimization of readout sensitivity for quantum devices. The realized cryogenic circuit allows fast impedance detection with a measured capacitance resolution down to 10 aF and an input-referred noise of 3.7 aF/<span><math><msqrt><mrow><mi>H</mi><mi>z</mi></mrow></msqrt></math></span>. At 4.2 K, the power consumption of the active inductor amounts to 120 μW, with an additional dissipation for on-chip current excitation (0.15 μW) and voltage amplification (2.9 mW) of the impedance measurement. Compared to the commonly used schemes based on dispersive RF reflectometry which require millimeter-scale passive inductors, the circuit exhibits a notably reduced footprint (50 μm × 60 μm), facilitating its integration in a scalable quantum-classical architecture. The impedancemetry method has been applied at 4.2 K to the detection of quantum effects in the gate capacitance of on-chip nanometric CMOS transistors that are individually addressed via multiplexing.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 4","pages":"Article 100068"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S270947232300031X/pdfft?md5=f88deb9c40975386ca56fe008802df80&pid=1-s2.0-S270947232300031X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135638060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}