Chengjun Li, Yubo Luo, Wang Li, Boyu Yang, Chengwei Sun, Wenyuan Ma, Zheng Ma, Yingchao Wei, Xin Li, Junyou Yang
{"title":"The on-chip thermoelectric cooler: advances, applications and challenges","authors":"Chengjun Li, Yubo Luo, Wang Li, Boyu Yang, Chengwei Sun, Wenyuan Ma, Zheng Ma, Yingchao Wei, Xin Li, Junyou Yang","doi":"10.1016/j.chip.2024.100096","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of 5G technology and increasing chip integration, traditional active cooling methods struggle to meet the growing thermal demands of chips. Thermoelectric coolers (TECs) have garnered great attention due to their rapid response, significant cooling differentials, strong compatibility, high stability and controllable device dimensions. In this review, starting from the fundamental principles of thermoelectric cooling and device design, high-performance thermoelectric cooling materials are summarized, and the progress of advanced on-chip TECs is comprehensively reviewed. Finally, the paper outlines the challenges and opportunities in TEC design, performance and applications, laying great emphasis on the critical role of thermoelectric cooling in addressing the evolving thermal management requirements in the era of emerging chip technologies.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 2","pages":"Article 100096"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000145/pdfft?md5=5df7bff3a72f84dd9ee90367220d271d&pid=1-s2.0-S2709472324000145-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of 5G technology and increasing chip integration, traditional active cooling methods struggle to meet the growing thermal demands of chips. Thermoelectric coolers (TECs) have garnered great attention due to their rapid response, significant cooling differentials, strong compatibility, high stability and controllable device dimensions. In this review, starting from the fundamental principles of thermoelectric cooling and device design, high-performance thermoelectric cooling materials are summarized, and the progress of advanced on-chip TECs is comprehensively reviewed. Finally, the paper outlines the challenges and opportunities in TEC design, performance and applications, laying great emphasis on the critical role of thermoelectric cooling in addressing the evolving thermal management requirements in the era of emerging chip technologies.