Statistical evaluation of 571 GaAs quantum point contact transistors showing the 0.7 anomaly in quantized conductance using cryogenic on-chip multiplexing

Chip Pub Date : 2024-04-16 DOI:10.1016/j.chip.2024.100095
{"title":"Statistical evaluation of 571 GaAs quantum point contact transistors showing the 0.7 anomaly in quantized conductance using cryogenic on-chip multiplexing","authors":"","doi":"10.1016/j.chip.2024.100095","DOIUrl":null,"url":null,"abstract":"<div><p>The mass production and the practical number of cryogenic quantum devices producible in a single chip are limited to the number of electrical contact pads and wiring of the cryostat or dilution refrigerator. It is, therefore, beneficial to contrast the measurements of hundreds of devices fabricated in a single chip in one cooldown process to promote the scalability, integrability, reliability, and reproducibility of quantum devices and to save evaluation time, cost and energy. Here, we used a cryogenic on-chip multiplexer architecture and investigated the statistics of the 0.7 anomaly observed on the first three plateaus of the quantized conductance of semiconductor quantum point contact (QPC) transistors. Our single chips contain 256 split gate field-effect QPC transistors (QFET) each, with two 16-branch multiplexed source-drain and gate pads, allowing individual transistors to be selected, addressed and controlled through an electrostatic gate voltage process. A total of 1280 quantum transistors with nano-scale dimensions are patterned in 5 different chips of GaAs heterostructures. From the measurements of 571 functioning QFETs taken at temperatures <em>T</em> = 1.4 K and <em>T</em> = 40 mK, it is found that the spontaneous polarisation model and Kondo effect do not fit our results. Furthermore, some of the features in our data largely agreed with van Hove model with short-range interactions. Our approach provides further insight into the quantum mechanical properties and microscopic origin of the 0.7 anomaly in QFETs, paving the way for the development of semiconducting quantum circuits and integrated cryogenic electronics, for scalable quantum logic control, readout, synthesis, and processing applications.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 3","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000133/pdfft?md5=5f30d302d84e157cb03adf3d6b99680b&pid=1-s2.0-S2709472324000133-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mass production and the practical number of cryogenic quantum devices producible in a single chip are limited to the number of electrical contact pads and wiring of the cryostat or dilution refrigerator. It is, therefore, beneficial to contrast the measurements of hundreds of devices fabricated in a single chip in one cooldown process to promote the scalability, integrability, reliability, and reproducibility of quantum devices and to save evaluation time, cost and energy. Here, we used a cryogenic on-chip multiplexer architecture and investigated the statistics of the 0.7 anomaly observed on the first three plateaus of the quantized conductance of semiconductor quantum point contact (QPC) transistors. Our single chips contain 256 split gate field-effect QPC transistors (QFET) each, with two 16-branch multiplexed source-drain and gate pads, allowing individual transistors to be selected, addressed and controlled through an electrostatic gate voltage process. A total of 1280 quantum transistors with nano-scale dimensions are patterned in 5 different chips of GaAs heterostructures. From the measurements of 571 functioning QFETs taken at temperatures T = 1.4 K and T = 40 mK, it is found that the spontaneous polarisation model and Kondo effect do not fit our results. Furthermore, some of the features in our data largely agreed with van Hove model with short-range interactions. Our approach provides further insight into the quantum mechanical properties and microscopic origin of the 0.7 anomaly in QFETs, paving the way for the development of semiconducting quantum circuits and integrated cryogenic electronics, for scalable quantum logic control, readout, synthesis, and processing applications.

对 571 个砷化镓量子点接触晶体管进行统计评估,显示使用低温片上多路复用技术的量子化电导存在 0.7 的反常现象
单个芯片中可量产的低温量子器件的实际数量受限于低温恒温器或稀释冰箱的电接触垫和布线数量。因此,在一次冷却过程中对单个芯片中制造的数百个器件进行对比测量,有利于提高量子器件的可扩展性、可集成性、可靠性和可重复性,并节省评估时间、成本和能源。在这里,我们使用了低温片上多路复用器架构,并研究了在半导体量子点接触(QPC)晶体管量子化电导的前三个高原上观察到的 0.7 异常的统计数据。我们的单芯片包含 256 个分离栅场效应 QPC 晶体管(QFET),每个晶体管有两个 16 支路复用源极-漏极和栅极焊盘,允许通过静电栅极电压过程选择、寻址和控制单个晶体管。在 5 种不同的砷化镓异质结构芯片中,共图案化了 1280 个具有纳米级尺寸的量子晶体管。在温度 T = 1.4 K 和 T = 40 mK 下对 571 个正常工作的 QFET 进行测量后发现,自发极化模型和近藤效应与我们的结果不符。此外,我们数据中的一些特征与具有短程相互作用的范霍夫模型基本吻合。我们的研究方法进一步揭示了量子场效应晶体管的量子力学特性和 0.7 反常点的微观起源,为开发半导体量子电路和集成低温电子器件,实现可扩展的量子逻辑控制、读出、合成和处理应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信