Large-area growth of synaptic heterostructure arrays for integrated neuromorphic visual perception chips

Chip Pub Date : 2024-06-01 DOI:10.1016/j.chip.2024.100088
Yao Deng , Shenghong Liu , Manshi Li , Na Zhang , Yiming Feng , Junbo Han , Yury Kapitonov , Yuan Li , Tianyou Zhai
{"title":"Large-area growth of synaptic heterostructure arrays for integrated neuromorphic visual perception chips","authors":"Yao Deng ,&nbsp;Shenghong Liu ,&nbsp;Manshi Li ,&nbsp;Na Zhang ,&nbsp;Yiming Feng ,&nbsp;Junbo Han ,&nbsp;Yury Kapitonov ,&nbsp;Yuan Li ,&nbsp;Tianyou Zhai","doi":"10.1016/j.chip.2024.100088","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional metal chalcogenides have garnered significant attention as promising candidates for novel neuromorphic synaptic devices due to their exceptional structural and optoelectronic properties. However, achieving large-scale integration and practical applications of synaptic chips has proven to be challenging due to significant hurdles in materials preparation and the absence of effective nanofabrication techniques. In a recent breakthrough, we introduced a revolutionary allopatric defect-modulated Fe<sub>7</sub>S<sub>8</sub>@MoS<sub>2</sub> synaptic heterostructure, which demonstrated remarkable optoelectronic synaptic response capabilities. Building upon this achievement, our current study takes a step further by presenting a sulfurization-seeding synergetic growth strategy, enabling the large-scale and arrayed preparation of Fe<sub>7</sub>S<sub>8</sub>@MoS<sub>2</sub> heterostructures. Moreover, a three-dimensional vertical integration technique was developed for the fabrication of arrayed optoelectronic synaptic chips. Notably, we have successfully simulated the visual persistence function of the human eye with the adoption of the arrayed chip. Our synaptic devices exhibit a remarkable ability to replicate the preprocessing functions of the human visual system, resulting in significantly improved noise reduction and image recognition efficiency. This study might mark an important milestone in advancing the field of optoelectronic synaptic devices, which significantly prompts the development of mature integrated visual perception chips.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 2","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000066/pdfft?md5=3c43e3097235258d0932a5944fcc9d1f&pid=1-s2.0-S2709472324000066-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional metal chalcogenides have garnered significant attention as promising candidates for novel neuromorphic synaptic devices due to their exceptional structural and optoelectronic properties. However, achieving large-scale integration and practical applications of synaptic chips has proven to be challenging due to significant hurdles in materials preparation and the absence of effective nanofabrication techniques. In a recent breakthrough, we introduced a revolutionary allopatric defect-modulated Fe7S8@MoS2 synaptic heterostructure, which demonstrated remarkable optoelectronic synaptic response capabilities. Building upon this achievement, our current study takes a step further by presenting a sulfurization-seeding synergetic growth strategy, enabling the large-scale and arrayed preparation of Fe7S8@MoS2 heterostructures. Moreover, a three-dimensional vertical integration technique was developed for the fabrication of arrayed optoelectronic synaptic chips. Notably, we have successfully simulated the visual persistence function of the human eye with the adoption of the arrayed chip. Our synaptic devices exhibit a remarkable ability to replicate the preprocessing functions of the human visual system, resulting in significantly improved noise reduction and image recognition efficiency. This study might mark an important milestone in advancing the field of optoelectronic synaptic devices, which significantly prompts the development of mature integrated visual perception chips.

用于集成神经形态视觉感知芯片的大面积生长突触异质结构阵列
二维金属卤化物因其卓越的结构和光电特性,作为新型神经形态突触器件的候选材料而备受关注。然而,由于材料制备过程中的重大障碍以及缺乏有效的纳米制造技术,实现突触芯片的大规模集成和实际应用已被证明具有挑战性。在最近的一项突破中,我们推出了一种革命性的全同性缺陷调制 Fe7S8@MoS2 突触异质结构,该结构展示了非凡的光电突触响应能力。在这一成果的基础上,我们目前的研究又向前迈进了一步,提出了一种硫化填充协同生长策略,从而实现了 Fe7S8@MoS2 异质结构的大规模阵列制备。此外,我们还开发了一种三维垂直整合技术,用于制造阵列式光电突触芯片。值得一提的是,我们采用阵列芯片成功模拟了人眼的视觉持久功能。我们的突触器件显示出复制人类视觉系统预处理功能的卓越能力,从而显著提高了降噪和图像识别效率。这项研究可能是推动光电突触器件领域发展的一个重要里程碑,极大地促进了成熟的集成视觉感知芯片的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信