Solid-state quantum nodes based on color centers and rare-earth ions coupled with fiber Fabry–Pérot microcavities

Chip Pub Date : 2024-03-01 DOI:10.1016/j.chip.2023.100081
Ruo-Ran Meng , Xiao Liu , Ming Jin , Zong-Quan Zhou , Chuan-Feng Li , Guang-Can Guo
{"title":"Solid-state quantum nodes based on color centers and rare-earth ions coupled with fiber Fabry–Pérot microcavities","authors":"Ruo-Ran Meng ,&nbsp;Xiao Liu ,&nbsp;Ming Jin ,&nbsp;Zong-Quan Zhou ,&nbsp;Chuan-Feng Li ,&nbsp;Guang-Can Guo","doi":"10.1016/j.chip.2023.100081","DOIUrl":null,"url":null,"abstract":"<div><p><strong>High-performance optical quantum memories serving as quantum nodes are crucial for the distribution of remote entanglement and the construction of</strong> <strong>large-scale</strong> <strong>quantum networks. Notably, quantum systems based on single emitters can achieve deterministic</strong> <strong>spin</strong><strong>–</strong><strong>photon</strong> <strong>entanglement,</strong> <strong>which</strong> <strong>greatly simplif</strong><strong>ies</strong> <strong>the difficulty of constructing quantum network nodes. Among them, optically interfaced spins embedded in</strong> <strong>solid-state</strong> <strong>systems, as</strong> <strong>atomic-like</strong> <strong>emitters, are important candidate systems for implementing</strong> <strong>long-lived</strong> <strong>quantum memory due to their stable physical properties and robustness to decoherence in scalable and compact hardware. To enhance the</strong> <strong>strength of light-matter interactions</strong><strong>, optical microcavities can be exploited as an important tool to generate</strong> <strong>high-</strong><strong>quality</strong> <strong>spin</strong><strong>–</strong><strong>photon</strong> <strong>entanglement for scalable quantum networks. They can enhance the photon collection probability and photon generation rate of specific optical transitions and improve the coherence and spectral purity of emitted photons. For</strong> <strong>solid-state</strong> <strong>systems, open Fabry</strong><strong>–</strong><strong>Pérot cavities can couple single emitters that are not in proximity to the surface, avoiding significant spectral diffusion induced by the interfaces while maintaining the wide tunability, which</strong> <strong>enables addressing of multiple single emitters in the frequency and spatial domain within a single device. This review describe</strong><strong>d</strong> <strong>the characteristics of single emitters as quantum memories with a comparison to atomic ensembles, the</strong> <strong>cavity-enhancement</strong> <strong>effect for single emitters and the advantages of different cavities, especially fiber Fabry</strong><strong>–</strong><strong>Pérot microcavities. Finally, recent experimental progress on</strong> <strong>solid-state</strong> <strong>single emitters coupled with fiber Fabry</strong><strong>–</strong><strong>Pérot microcavities</strong> <strong>was also</strong> <strong>reviewed, with a focus on color centers in diamond and silicon carbide, as well as</strong> <strong>rare-earth</strong> <strong>dopants.</strong></p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 1","pages":"Article 100081"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472323000448/pdfft?md5=33e99ce5127b3e4b65c832933ad49fec&pid=1-s2.0-S2709472323000448-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472323000448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance optical quantum memories serving as quantum nodes are crucial for the distribution of remote entanglement and the construction of large-scale quantum networks. Notably, quantum systems based on single emitters can achieve deterministic spinphoton entanglement, which greatly simplifies the difficulty of constructing quantum network nodes. Among them, optically interfaced spins embedded in solid-state systems, as atomic-like emitters, are important candidate systems for implementing long-lived quantum memory due to their stable physical properties and robustness to decoherence in scalable and compact hardware. To enhance the strength of light-matter interactions, optical microcavities can be exploited as an important tool to generate high-quality spinphoton entanglement for scalable quantum networks. They can enhance the photon collection probability and photon generation rate of specific optical transitions and improve the coherence and spectral purity of emitted photons. For solid-state systems, open FabryPérot cavities can couple single emitters that are not in proximity to the surface, avoiding significant spectral diffusion induced by the interfaces while maintaining the wide tunability, which enables addressing of multiple single emitters in the frequency and spatial domain within a single device. This review described the characteristics of single emitters as quantum memories with a comparison to atomic ensembles, the cavity-enhancement effect for single emitters and the advantages of different cavities, especially fiber FabryPérot microcavities. Finally, recent experimental progress on solid-state single emitters coupled with fiber FabryPérot microcavities was also reviewed, with a focus on color centers in diamond and silicon carbide, as well as rare-earth dopants.

基于色心和稀土离子与光纤法布里-佩罗特微腔耦合的固态量子节点
作为量子节点的高性能光量子存储器对于远程纠缠的分布和大规模量子网络的构建至关重要。值得注意的是,基于单发射体的量子系统可以实现确定性的自旋光子纠缠,大大简化了构建量子网络节点的难度。其中,嵌入固态系统中的光接口自旋作为原子样发射体,因其稳定的物理特性和在可扩展的紧凑型硬件中对退相干的鲁棒性,成为实现长寿命量子存储器的重要候选系统。为了增强光-物质相互作用的强度,可以利用光微腔作为重要工具,为可扩展量子网络生成高质量的自旋-光子纠缠。它们可以提高特定光学跃迁的光子收集概率和光子产生率,并改善发射光子的相干性和光谱纯度。对于固态系统,开放式法布里-佩罗空腔可以耦合不靠近表面的单个发射器,避免由界面引起的显著光谱扩散,同时保持宽可调性,从而在单个器件内解决多个单个发射器的频率和空间域问题。这篇综述介绍了作为量子存储器的单发射器的特性,并与原子序数进行了比较,还介绍了单发射器的空腔增强效应以及不同空腔的优势,尤其是光纤法布里-佩罗特微空腔。最后,回顾了固态单发射体与光纤法布里-佩罗特微腔耦合的最新实验进展,重点是金刚石和碳化硅中的色心以及稀土掺杂物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信