{"title":"Localization of α-smooth muscle actin in osteoblast differentiation during periodontal development.","authors":"Hiroaki Takebe, Hanaka Sato, Toshihide Mizoguchi, Akihiro Hosoya","doi":"10.1007/s00441-024-03940-4","DOIUrl":"10.1007/s00441-024-03940-4","url":null,"abstract":"<p><p>α-Smooth muscle actin (α-SMA) is an actin isoform commonly found within vascular smooth muscle cells. Moreover, α-SMA-positive cells are localized in the dental follicle (DF). DF is derived from alveolar bone (AB), cementum, and periodontal ligament (PDL). Therefore, α-SMA-positive cells in the periodontal tissue are speculated to be a marker for mesenchymal stem cells during tooth development. In particular, the mechanism of osteoblast differentiation is not clear. This study demonstrated the fate of α-SMA-positive cells around the tooth germ immunohistochemically. First, α-SMA- and Runx2-positive localization at embryonic days (E) 13, E14, postnatal days (P) 9, and P15 was demonstrated. α-SMA- and Runx2-positive cells were detected in the upper part of the DF at P1. At P9 and P15, α-SMA-positive cells in the PDL were detected in the upper and lower parts. The positive reaction of Runx2 was also localized in the PDL. Then, the distribution of α-SMA-positive cell progeny at P9 and P15 were clarified using α-SMA-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (α-SMA/tomato) mice. It has known that Runx2-positive cells differentiate into osteoblasts. In this study, some Runx2 and α-SMA-positive cells were localized in the DF and PDL. The lineage-tracing analysis demonstrated that the α-SMA/tomato-positive cells expressing Runx2 or Osterix were detected on the AB surface at P15. α-SMA/tomato-positive cells expressing type I collagen were found in the AB matrix. These results indicate that the progeny of the α-SMA-positive cells in the DF could differentiate into osteogenic cells. In conclusion, α-SMA could be a potential marker of progenitor cells that differentiate into osteoblasts.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"119-127"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2025-01-01Epub Date: 2024-11-08DOI: 10.1007/s00441-024-03927-1
Heba Fikry, Lobna A Saleh, Doaa Ramadan Sadek, Hadwa Ali Abd Alkhalek
{"title":"The possible protective effect of luteolin on cardiovascular and hepatic changes in metabolic syndrome rat model.","authors":"Heba Fikry, Lobna A Saleh, Doaa Ramadan Sadek, Hadwa Ali Abd Alkhalek","doi":"10.1007/s00441-024-03927-1","DOIUrl":"10.1007/s00441-024-03927-1","url":null,"abstract":"<p><p>The metabolic syndrome, or MetS, is currently a global health concern. The anti-inflammatory, anti-proliferative, and antioxidant properties of luteolin are some of its advantageous pharmacological characteristics. This research was designed to establish a MetS rat model and investigate the possible protective effect of luteolin on cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. Forty adult male albino rats were split into four groups: a negative control group, a group treated with luteolin, a group induced MetS (fed 20% fructose), and a group treated with luteolin (fed 20% fructose and given luteolin). Following the experiment after 8 weeks, biochemical, histological (light and electron), and immunohistochemistry analyses were performed on liver and heart tissues. Serum levels of cTnI, CK-MB, and LDH were significantly elevated in response to the cardiovascular effect of MetS. Furthermore, compared to the negative control group, the MetS group showed a marked increase in lipid peroxidation in the cardiac and hepatic tissues, as evidenced by elevated levels of MDA and a decline in the antioxidant defense system, as demonstrated by lower activities of GSH and SOD. The fatty liver-induced group exhibited histological alterations, including disrupted hepatic architecture, dilated and congested central veins, blood sinusoids, and portal veins. In addition to nuclear structural alterations, most hepatocytes displayed varying degrees of cytoplasmic vacuolation, mitochondrial alterations, and endoplasmic reticulum dilatation. These alterations were linked to inflammatory cellular infiltrations, collagen fiber deposition, active hepatic stellate cells, and scattered hypertrophied Kupffer cells, as demonstrated by electron microscopy and validated by immunohistochemical analysis. It is interesting to note that eosinophils were seen between the liver cells and in dilated blood sinusoids. Moreover, the biochemical (hepatic and cardiac) and histological (liver) changes were significantly less severe in luteolin-treated rat on a high-fructose diet. These results suggested that luteolin protects against a type of metabolic syndrome that is produced experimentally.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"27-60"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aida Shakouri-Motlagh, Andrea J O'Connor, Shaun P Brennecke, Daniel E Heath, Bill Kalionis
{"title":"Extracellular vesicles support increased expansion of mesenchymal stromal cells on fetal membrane-derived decellularized extracellular matrix.","authors":"Aida Shakouri-Motlagh, Andrea J O'Connor, Shaun P Brennecke, Daniel E Heath, Bill Kalionis","doi":"10.1007/s00441-024-03946-y","DOIUrl":"https://doi.org/10.1007/s00441-024-03946-y","url":null,"abstract":"<p><p>Decidual mesenchymal stromal cells (DMSC) were the source of extracellular vesicles (DMSC_EV). The xCELLigence real-time cell growth assay revealed increasing concentrations of EVs decreased DMSC attachment in the early growth phase but stimulated DMSC proliferation at day 7 when grown on tissue culture plastic (TCP). DMSC attachment and proliferation varied depending on the growth surface and DMSC_EV supplementation. DMSC attachment increased on decellularized and solubilized amniotic (s-dAM) whether or not EVs were added. Only Matrigel substrate increased DMSC attachment with added EVs. The addition of EVs increased DMSC proliferation only on the s-dAM substrate. DMSCs were more motile on s-dAM and decellularized and solubilized chorionic (s-dCM) membranes following EV addition. The osteogenic potential of DMSCs was improved on s-dAM substrates when supplanted with EVs. Finally, the levels of reactive oxygen species in DMSCs varied depending on the substrate but not on added EVs. We show that the addition of in vitro EVs isolated from the source being expanded (i.e., DMSCs) and the presence of ECM improve DMSC behaviours during ex vivo expansion. The inclusion of two key components of the MSC niche, EVs and ECM, benefitted the ex vivo expansion of MSCs. Added in vitro EVs increased the proliferation of DMSCs when grown on s-dAM but not on s-dCM, whereas they improved DMSC mobility on both surfaces. Testing different ECMs could be used to promote specific desired characteristics of DMSCs, and different combinations of EVs and ECM may enhance desirable MSC characteristics for specific therapeutic settings.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2024-12-01Epub Date: 2024-10-23DOI: 10.1007/s00441-024-03925-3
Amira Fathy Ahmed, Maha Ahmed Madi, Azza Hussein Ali, Sahar A Mokhemer
{"title":"The ameliorating effects of adipose-derived stromal vascular fraction cells on blue light-induced rat retinal injury via modulation of TLR4 signaling, apoptosis, and glial cell activity.","authors":"Amira Fathy Ahmed, Maha Ahmed Madi, Azza Hussein Ali, Sahar A Mokhemer","doi":"10.1007/s00441-024-03925-3","DOIUrl":"10.1007/s00441-024-03925-3","url":null,"abstract":"<p><p>Blue light (BL)-induced retinal injury has become a very common problem due to over exposure to blue light-emitting sources. This study aimed to investigate the possible ameliorating impact of stromal vascular fraction cells (SVFCs) on BL-induced retinal injury. Forty male albino rats were randomly allocated into four groups. The control group rats were kept in 12-h light/12-h dark. Rats of SVFC-control as the control group, but rats were intravenously injected once by SVFCs. Rats of both the BL-group and BL-SVFC group were exposed to BL for 2 weeks; then rats of the BL-SVFC group were intravenously injected once by SVFCs. Following the BL exposure, rats were kept for 8 weeks. Physical and physiological studies were performed; then retinal tissues were collected for biochemical and histological studies. The BL-group showed physical and physiological changes indicating affection of the visual function. Biochemical marker assessment showed a significant increase in MDA, TLR4 and MYD88 tissue levels with a significant decrease in TAC levels. Histological and ultrastructural assessment showed disruption of the normal histological architecture with retinal pigment epithelium, photoreceptors, and ganglion cell deterioration. A significant increase in NF-κB, caspase-3, and GFAP immunoreactivity was also detected. BL-SVFC group showed a significant improvement in physical, physiological, and biochemical parameters. Retinal tissues revealed amelioration of retinal structural and ultrastructural deterioration and a significant decrease in NF-κB and caspase-3 immunoreactivity with a significant increase in GFAP immunoreaction. This study concluded that SVFCs could ameliorate the BL-induced retinal injury through TLR-4/MYD-88/NF-κB signaling inhibition, regenerative, anti-oxidative, and anti-apoptotic effects.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"207-225"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical stimulation promotes the maturation of cardiomyocyte-like cells from P19 cells and the function in a mouse model of myocardial infarction.","authors":"Guiliang Shi, Chaopeng Jiang, Jiwei Wang, Ping Cui, Weixin Shan","doi":"10.1007/s00441-024-03922-6","DOIUrl":"10.1007/s00441-024-03922-6","url":null,"abstract":"<p><p>In this study, we aimed to promote the maturation of cardiomyocytes-like cells by mechanical stimulation, and evaluate their therapeutic potential against myocardial infarction. The cyclic tensile strain was used to induce the maturation of cardsiomyocyte-like cells from P19 cells in vitro. Western blot and qPCR assays were performed to examine protein and gene expression, respectively. High-resolution respirometry was used to assay cell function. The induced cells were then evaluated for their therapeutic effect. In vitro, we observed cyclic tensile strain induced P19 cell differentiation into cardiomyocyte-like cells, as indicated by the increased expression of cardiomyocyte maturation-related genes such as Myh6, Myl2, and Gja1. Furthermore, cyclic tensile strain increased the antioxidant capacity of cardiomyocytes by upregulating the expression Sirt1, a gene important for P19 maturation into cardiomyocyte-like cells. High-resolution respirometry analysis of P19 cells following cyclic tensile strain showed enhanced metabolic function. In vivo, stimulated P19 cells enhanced cardiac function in a mouse model of myocardial infarction, and these mice showed decreased infarction-related biomarkers. The current study demonstrates a simple yet effective mean to induce the maturation of P19 cells into cardiomyocyte-like cells, with a promising therapeutic potential for the treatment of myocardial infarction.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"227-237"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2024-12-01Epub Date: 2024-10-16DOI: 10.1007/s00441-024-03920-8
Ezel Erkan, Bilge Serdaroglu, İbrahim Alptekin, Dilek Sahin, Derya Uyan Hendem, Ferda Topal Çelikkan, Alp Can
{"title":"Revisiting the human umbilical cord epithelium. An atypical epithelial sheath with distinctive features.","authors":"Ezel Erkan, Bilge Serdaroglu, İbrahim Alptekin, Dilek Sahin, Derya Uyan Hendem, Ferda Topal Çelikkan, Alp Can","doi":"10.1007/s00441-024-03920-8","DOIUrl":"10.1007/s00441-024-03920-8","url":null,"abstract":"<p><p>The umbilical cord epithelium (UCE) is the surface tissue that covers the umbilical cord (UC). It is widely considered a single-layered epithelium composed of squamous or cuboidal cells, which are in constant contact with amniotic fluid. The objective of this study was to elucidate the distinctive structural characteristics and abundance of specific proteins in this unique epithelium, many of which have not been previously demonstrated. Samples of the UC were obtained from term pregnancies (n = 12) and processed for examination using stereo, light, electron, and 3D high-resolution confocal microscopy. Sections displayed a range of stratification, ranging from a single squamous layer to 4-5 layers of round/cuboid cells, challenging the notion of considering it as a single-layered structure. Cells are located on a well-developed basement membrane (BM), as evidenced by the expression of BM-specific proteins and PAS staining. The cells possess distinctive cytoplasmic domains that are tightly bound to each other by desmosomes and interdigitating anchoring surfaces. Desquamations and limited organelles suggest that the cells have reached the final stages of differentiation and are no longer actively synthesizing proteins, despite maintaining stratification-specific expression levels of cytoskeletal, junctional, receptor, and stem cell proteins. Although definitive keratinization was not observed, the distribution of proteins and the distinctive structural organization of the single/multi-layered cells suggest that they exhibit plasticity, likely due to adaptive mechanisms in response to chemical and/or mechanical stimuli during fetal development. These structural alterations may facilitate the active transportation of soluble ingredients between the amniotic fluid and cord blood through an intercellular route.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"175-189"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2024-12-01Epub Date: 2024-10-21DOI: 10.1007/s00441-024-03923-5
Daniela Giaquinto, Elisa Fonsatti, Martina Bortoletti, Giuseppe Radaelli, Elena De Felice, Paolo de Girolamo, Daniela Bertotto, Livia D'Angelo
{"title":"Olfactory and gustatory chemical sensor systems in the African turquoise killifish: Insights from morphology.","authors":"Daniela Giaquinto, Elisa Fonsatti, Martina Bortoletti, Giuseppe Radaelli, Elena De Felice, Paolo de Girolamo, Daniela Bertotto, Livia D'Angelo","doi":"10.1007/s00441-024-03923-5","DOIUrl":"10.1007/s00441-024-03923-5","url":null,"abstract":"<p><p>Smell and taste are extensively studied in fish species as essential for finding food and selecting mates while avoiding toxic substances and predators. Depending on the evolutionary position and adaptation, a discrete variation in the morphology of these sense organs has been reported in numerous teleost species. Here, for the first time, we approach the phenotypic characterization of the olfactory epithelium and taste buds in the African turquoise killifish (Nothobranchius furzeri), a model organism known for its short lifespan and use in ageing research. Our observations indicate that the olfactory epithelium of N. furzeri is organized as a simple patch, lacking the complex folding into a rosette, with an average size of approximately 600 µm in length, 300 µm in width, and 70 µm in thickness. Three main cytotypes, including olfactory receptor neurons (CalbindinD28K), supporting cells (β-tubulin IV), and basal cells (Ki67), were identified across the epithelium. Further, we determined the taste buds' distribution and quantification between anterior (skin, lips, oral cavity) and posterior (gills, pharynx, oesophagus) systems. We identified the key cytotypes by using immunohistochemical markers, i.e. CalbindinD28K, doublecortin, and neuropeptide Y (NPY) for gustatory receptor cells, glial fibrillary acidic protein (GFAP) for supporting cells, and Ki67, a marker of cellular proliferation for basal cells. Altogether, these results indicate that N. furzeri is a microsmatic species with unique taste and olfactory features and possesses a well-developed posterior taste system compared to the anterior. This study provides fundamental insights into the chemosensory biology of N. furzeri, facilitating future investigations into nutrient-sensing mechanisms and their roles in development, survival, and ageing.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"239-252"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2024-12-01Epub Date: 2024-10-22DOI: 10.1007/s00441-024-03926-2
Emanuela Chiarella
{"title":"Exploring the contribution of Zfp521/ZNF521 on primary hematopoietic stem/progenitor cells and leukemia progression.","authors":"Emanuela Chiarella","doi":"10.1007/s00441-024-03926-2","DOIUrl":"10.1007/s00441-024-03926-2","url":null,"abstract":"<p><p>Hematopoietic stem cells (HSCs) drive cellular turnover in the hematopoietic system by balancing self-renewal and differentiation. In the adult bone marrow (BM), these cells are regulated by a complex cellular microenvironment known as \"niche,\" which involves dynamic interactions between diverse cellular and non-cellular elements. During blood cell maturation, lineage branching is guided by clusters of genes that interact or counteract each other, forming complex networks of lineage-specific transcription factors. Disruptions in these networks can lead to obstacles in differentiation, lineage reprogramming, and ultimately malignant transformation, including acute myeloid leukemia (AML). Zinc Finger Protein 521 (Znf521/Zfp521), a conserved transcription factor enriched in HSCs in both human and murine hematopoiesis, plays a pivotal role in regulating HSC self-renewal and differentiation. Its enforced expression preserves progenitor cell activity, while inhibition promotes differentiation toward the lymphoid and myeloid lineages. Transcriptomic analysis of human AML patient samples has revealed upregulation of ZNF521 in AMLs with the t(9;11) fusion gene MLL-AF9. In vitro studies have shown that ZNF521 collaborates with MLL-AF9 to enhance the growth of transformed leukemic cells, increase colony formation, and activate MLL target genes. Conversely, inhibition of ZNF521 using short-hairpin RNA (shRNA) results in decreased leukemia proliferation, reduced colony formation, and induction of cell cycle arrest in MLL-rearranged AML cell lines. In vivo experiments have demonstrated that mZFP521-deficient mice transduced with MLL-AF9 experience a delay in leukemia development. This review provides an overview of the regulatory network involving ZNF521, which plays a crucial role in controlling both HSC self-renewal and differentiation pathways. Furthermore, we examine the impact of ZNF521 on the leukemic phenotype and consider it a potential marker for MLL-AF9<sup>+</sup> AML.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"161-173"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2024-12-01Epub Date: 2024-10-16DOI: 10.1007/s00441-024-03919-1
Daniel G Cyr, Cécile Adam, Julie Dufresne, Mary Gregory
{"title":"Regulation of the gap junction interplay during postnatal development in the rat epididymis.","authors":"Daniel G Cyr, Cécile Adam, Julie Dufresne, Mary Gregory","doi":"10.1007/s00441-024-03919-1","DOIUrl":"10.1007/s00441-024-03919-1","url":null,"abstract":"<p><p>During postnatal development of the rat epididymis, a change in the expression of gap junction proteins, or connexins (Cxs), occurs, in which Gjb2 (Cx26) and Gja1 (Cx43) levels in the proximal epididymis are decreased, while Gjb1 (Cx32), Gjb4 (Cx30.3) and Gjb5 (Cx31.1) levels increase. The mechanism(s) responsible for the switch in Cx expression is unknown. The aim of this study is to identify the mechanisms responsible for the decrease in GJB2 protein levels and the increase in other Cxs during postnatal development. Results indicate that decreased Gjb2 expression for 48 h does not alter the expression of other Cxs in RCE-1 principal cells, suggesting a lack of compensatory expression. Sequence analysis of both Gjb2 and Gjb1 promoters identified common multiple response elements to steroid hormones. Using RCE-1 cells, we observed that dexamethasone increased Gjb2 mRNA levels by twofold after 48 h, while estradiol had no effect. Orchidectomy in rats resulted in a significant increase in GJB2 and decreased GJB1 in the caput and corpus epididymidis. Changes in Cxs protein levels were prevented by testosterone in orchidectomized rats. Similar results were observed in the prostate, another androgen-receptive organ. LNCaP cells, which are androgen-responsive, showed that exogenous dihydrotestosterone (DHT) decreased Gjb2 mRNA levels by approximately 50% concomitant with a 1.5-fold increase in Gjb1 levels. Using a GJB1 promoter construct we showed that DHT could induce transactivation of the luciferase transgene, while transactivation of two GJB2 promoters were unaltered. Results indicate that androgens and glucocorticoids regulate the expression of epididymal Cxs.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"191-206"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Type 2 vomeronasal receptor expression in the olfactory organ of African lungfish, Protopterus annectens.","authors":"Shoko Nakamuta, Zicong Zhang, Masato Nikaido, Takuya Yokoyama, Yoshio Yamamoto, Nobuaki Nakamuta","doi":"10.1007/s00441-024-03918-2","DOIUrl":"10.1007/s00441-024-03918-2","url":null,"abstract":"<p><p>The olfactory organ of tetrapods, with few exceptions, comprises the main and accessory organs: olfactory epithelium (OE) and vomeronasal organ (VNO). Unlike tetrapods, teleost fish lack a VNO. However, lungfish, a type of sarcopterygian fish closely related to tetrapods, possesses a lamellar OE similar to the OE of teleosts and a recess epithelium (RecE) resembling the amphibian VNO. The RecE has been hypothesized as a primordial VNO. Olfactory receptors in tetrapods are distinctively expressed in the OE and VNO. For instance, type 2 vomeronasal receptors (V2Rs) in Xenopus are categorized into those exclusively expressed in the OE and those solely expressed in the VNO. It remains unclear whether V2Rs are differentially expressed between the lamellar OE and RecE in lungfish. This study investigated V2R expression in the lamellar OE and RecE of the African lungfish, Protopterus annectens. P. annectens V2Rs were categorized into three groups: those exclusively expressed in the lamellar OE, those exclusively expressed in the RecE, and those expressed in both the lamellar OE and RecE. V2Rs exclusively expressed in the RecE and those expressed in both the lamellar OE and RecE formed a distinct clade in the phylogenetic tree, whereas others were solely expressed in the lamellar OE. These findings suggest that lungfish V2R expression represents an intermediate stage toward complete segregation between V2Rs expressed in the OE and those expressed in the VNO.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"79-91"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}