{"title":"Enhancer Enh483 regulates myoblast proliferation and differentiation of buffalo myoblasts by targeting FAXC.","authors":"Yaling Chen, Jiahui Zhao, Cuiwei Zhong, Yujin Kang, Zhaocheng Xiong, Jieping Huang, Zhipeng Li, Qingyou Liu, Deshun Shi, Xinxin Li, Jian Wang, Hui Li","doi":"10.1007/s00441-024-03944-0","DOIUrl":"10.1007/s00441-024-03944-0","url":null,"abstract":"<p><p>A detailed understanding of the precise regulatory mechanisms governing buffalo skeletal muscle is crucial for improving meat quality and yield. Proper skeletal muscle fate decisions necessitate the accurate regulation of key enhancers. This study screened nine potential enhancers linked to muscle development by analysing ATAC-seq data from buffalo myoblasts during the proliferative and differentiative phases. The enhancer activity of these candidates was confirmed in buffalo myoblasts, C2C12, and human skeletal muscle myoblasts using a dual-luciferase reporter system. The CRISPRi system and RT-qPCR were used to test the effects of 9 candidate enhancers on buffalo myoblasts. The active enhancer, Enh483, was selected based on its significant impact. Upon successful inhibition of Enh483 using CRISPRi, decreases in the expression of buffalo myogenic proliferation marker genes (PCNA, CyclinD1, and CDK2) were observed via RT-qPCR and Western blot. Subsequent proliferation assays using CCK-8 and EdU confirmed the promotive effect of Enh483 on buffalo myogenic cell proliferation. Following a 5-day differentiation induction period, changes in the expression of differentiation marker genes (MyoD1, MyoG, and MyHC) were analysed using RT-qPCR and Western blot. Additionally, fused myotube numbers were quantified, and the impact of Enh483 on buffalo myogenic cell differentiation was assessed through immunofluorescence. Our findings indicate that Enh483 facilitates buffalo myogenic cell differentiation. Further interaction analysis utilising 3C-PCR revealed a direct association between Enh483 and the FAXC promoter. In summary, the results from this study lay a foundational framework for deciphering the intricate regulatory mechanisms underpinning buffalo muscle development.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"161-171"},"PeriodicalIF":3.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142834056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2025-02-01Epub Date: 2024-12-20DOI: 10.1007/s00441-024-03938-y
Otto Baumann, Feng Cheng, Frank Kirschbaum, Ralph Tiedemann
{"title":"Organization of the stalk system on electrocytes in mormyrid weakly electric fish Campylomormyrus compressirostris.","authors":"Otto Baumann, Feng Cheng, Frank Kirschbaum, Ralph Tiedemann","doi":"10.1007/s00441-024-03938-y","DOIUrl":"10.1007/s00441-024-03938-y","url":null,"abstract":"<p><p>The adult electric organ in weakly electric mormyrid fish consists of action-potential-generating electrocytes, structurally and functionally modified skeletal muscle cells. The electrocytes have a disc-shaped portion and, on one of its sides, numerous thin processes, termed stalklets. These unite to stalks leading to a single main stalk that carries the innervation site. Here, we describe the 3-dimensional layout of the stalklet/stalk system in adult Campylomormyrus compressirostris by differential interference contrast microscopy and confocal fluorescence microscopy. Using antibodies against Na<sup>+</sup>/K<sup>+</sup>-ATPase α-subunit and plasma membrane Ca<sup>2+</sup>-ATPase, we show that these ion pumps are differentially distributed over the stalklet/stalk system, with plasma membrane Ca<sup>2+</sup>-ATPase being enriched on the stalklet membrane. Stalklets are distributed and organized in a quite uniform pattern on the posterior face of the electrocyte disc and fuse to terminal stalks. The latter then unite in a mostly dichotomic mode to stalks of increasing thickness, with the main stalk measuring about 100 µm in diameter. We further analyse the structural organization of stalklets and stalks, with a characteristic cytoskeletal system of bundled actin filaments in the centre and nuclei in subsurface position. These results suggest that the stalklet/stalk system is adapted in its structural layout to generate an action potential highly synchronized over the entire disc-portion of the electrocyte, accounting for the short electric organ discharge in this species. Our results suggest that actin-related proteins overexpressed in electrocytes, as shown previously by transcriptome analysis, may be involved in the organization of the unique F-actin system in stalklets and stalks.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"193-209"},"PeriodicalIF":3.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142863059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2025-02-01Epub Date: 2024-12-06DOI: 10.1007/s00441-024-03933-3
An Thai, Christian Doescher, Nawfal Kamal, Darren Teramoto, Cameron Fung, Ed Cha, Vy La, Pauline Cheng, Sharona Sedighim, Angelo Keklikian, Finosh G Thankam
{"title":"Single cell transcriptomics profiling of the stromal cells in the pathologic association of ribosomal proteins in the ischemic myocardium and epicardial fat.","authors":"An Thai, Christian Doescher, Nawfal Kamal, Darren Teramoto, Cameron Fung, Ed Cha, Vy La, Pauline Cheng, Sharona Sedighim, Angelo Keklikian, Finosh G Thankam","doi":"10.1007/s00441-024-03933-3","DOIUrl":"10.1007/s00441-024-03933-3","url":null,"abstract":"<p><p>Sustenance of ischemia in the surviving cardiac tissue following myocardial infarction (MI) elicits a proinflammatory milieu resulting in subsequent pathological episodes. Also, the activation and release of ribosomal proteins under ischemic insults have been unveiled; however, their extra ribosomal functions are unknown. We identified the ribosomal proteins including RPL10A, RPL14, RPL30, RPS18, FAU-40 (RPS30), and RPSA (Laminin Receptor, LR) in the vesicles of ischemia challenged epicardial adipose tissue derived stromal cells (EATDS). The present study aimed to assess the association of these proteins in the epicardial adipose tissues (EAT) and left ventricular (LV) myocardium and isolated stromal cells (EATDS and LVSCs) from hyperlipidemic (HL), MI and coronary artery bypass graft (CABG) swine models. The findings revealed an upregulation of RPL10A, RPL14, RPL30, RPS18, RPS30, and RPSA in the LV tissues of CABG and HL swine with a concomitant reduction in the MI group. RPS30 displayed similar upregulation in EAT, whereas the expression of other ribosomal proteins was not significantly altered. Additionally, the ischemic LVSCs and EATDS displayed altered expression status of these genes compared to the control. Also, the RPS18 + , RPL30 + and RPSA + LVSCs favored ischemia and revealed similar anti-inflammatory and regenerative sub-phenotypes reflecting the protective/survival mechanisms. Further understanding regarding the underlying molecular mechanisms and functions of these ribosomal proteins offers immense translational opportunities in the better management of ischemic cardiac complications.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"173-192"},"PeriodicalIF":3.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142784238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2025-02-01Epub Date: 2024-12-10DOI: 10.1007/s00441-024-03932-4
Arianna Casini, Giorgio Vivacqua, Ludovica Ceci, Stefano Leone, Rosa Vaccaro, Marco Tagliafierro, Filippo Maria Bassi, Sara Vitale, Emanuele Bocci, Luigi Pannarale, Simone Carotti, Antonio Franchitto, Patrizia Mancini, Roberta Sferra, Antonella Vetuschi, Giovanni Latella, Paolo Onori, Eugenio Gaudio, Romina Mancinelli
{"title":"TNBS colitis induces architectural changes and alpha-synuclein overexpression in mouse distal colon: A morphological study.","authors":"Arianna Casini, Giorgio Vivacqua, Ludovica Ceci, Stefano Leone, Rosa Vaccaro, Marco Tagliafierro, Filippo Maria Bassi, Sara Vitale, Emanuele Bocci, Luigi Pannarale, Simone Carotti, Antonio Franchitto, Patrizia Mancini, Roberta Sferra, Antonella Vetuschi, Giovanni Latella, Paolo Onori, Eugenio Gaudio, Romina Mancinelli","doi":"10.1007/s00441-024-03932-4","DOIUrl":"10.1007/s00441-024-03932-4","url":null,"abstract":"<p><p>Alpha-synuclein (α-syn) is widely expressed in presynaptic neuron terminals, and its structural alterations play an important role in the pathogenesis of Parkinson's disease (PD). Aggregated α-syn has been found in brain, in the peripheral nerves of the enteric nervous system (ENS) and in the intestinal neuroendocrine cells during synucleinopathies and inflammatory bowel disorders. In the present study, we evaluated the histomorphological features of murine colon with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, a common model of colitis. Thereafter, we investigated the expression of α-syn, Toll-like receptor 4 (TLR4), choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), and calcitonin-like receptor (CALCR). Finally, we investigated the presence of phosphorylated α-syn (pS129 α-syn) aggregates and their relationship with inflammatory cells. Colon from TNBS mice showed an increase in inflammatory cells infiltrate and significative changes in the architecture of the intestinal mucosa. α-Syn expression was significantly higher in inflamed colon. VIP was increased in both the mucosa and muscularis externa of TNBS mice, while TH, CGRP, and CALCR were significantly reduced in TNBS mice. Amyloid aggregates of pS129 α-syn were detectable in the ENS, as in the macrophages around the glands of the mucosa correlating with the markers of inflammation. This study describes - for the first time - the altered expression of α-syn and the occurrence of amyloid α-syn aggregates in the inflammatory cells under colitis, supporting the critical role of bowel inflammation in synucleinopathies and the involvement of α-syn in IBD.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"247-265"},"PeriodicalIF":3.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esteban M Rodríguez, Montserrat Guerra, Juan Luis Blázquez
{"title":"Roots and early routes of neuroendocrinology.","authors":"Esteban M Rodríguez, Montserrat Guerra, Juan Luis Blázquez","doi":"10.1007/s00441-024-03928-0","DOIUrl":"https://doi.org/10.1007/s00441-024-03928-0","url":null,"abstract":"<p><p>Carl C. Speidel (1919) and Ernst Scharrer (1928) were privileged witnesses of the encounter between neurons and hormones, a biological phenomenon that had been occurring in nature during millions of years of evolution, as Berta Scharrer started to unfold since 1935 on. The story of neurosecretion is intimately associated to that of the hypothalamus, such a \"marvellous region\", as Wolfgang Bargmann (1975) called it. This story started more than two millennia ago. We have made an effort to trace the roots of the discoveries that gave rise to a medical discipline, neuroendocrinology. Our trip to the roots covers a period from the fourth century BC, when an extraordinary Medical School was founded in Alexandria, and extends into the late 1970s of the twentieth century, when neuroendocrine research had started to grow exponentially. An effort has been made to track back the origin of each piece of knowledge that was constructing, brick upon brick, the building of this new medical science, hoping that it would help neuroendocrinologists of the new era to find their own roots, to meet their ancestors. Tracking the roots of a particular phenomenon provides the opportunity to have an overview of the whole phenomenon, allowing comprehension rather than merely knowledge. An important purpose pursued throughout this article was to pay a tribute to all those who, in the early days, contributed to the brain-endocrine encounter. We have tried our best to bring back the achievements of most of them.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"100 years Cell and Tissue Research: the founders and their successors.","authors":"Klaus Unsicker","doi":"10.1007/s00441-025-03950-w","DOIUrl":"https://doi.org/10.1007/s00441-025-03950-w","url":null,"abstract":"<p><p>One hundred years ago, Cell and Tissue Research was founded under the title \"Zeitschrift für Zellen- und Gewebelehre,\" later \"Zeitschrift für Zellforschung und mikroskopische Anatomie.\" The founders were four eminent German and Swiss cell biologists and zoologists, R. Goldschmidt, W. von Möllendorff, H. Bauer, and J. Seiler.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neurological confirmation of periplanone-D exploitation as a primary sex pheromone and counteractions of other components in the smoky brown cockroach Periplaneta fuliginosa.","authors":"Mana Domae, Masazumi Iwasaki, Hiroshi Nishino","doi":"10.1007/s00441-024-03935-1","DOIUrl":"10.1007/s00441-024-03935-1","url":null,"abstract":"<p><p>The smoky brown cockroach, Periplaneta fuliginosa, is a peridomestic pest inhabiting broad regions of the world from temperate to subtropical zones. In common with other related species such as the American cockroach, Periplaneta americana, female-emitted sex pheromone components, named periplanones, are known to be key volatiles that elicit long-range attraction and courtship rituals in males. How periplanones are processed in the nervous system has been entirely unexplored in P. fuliginosa. By using pheromone compounds, periplanones A, B, C, and D, as stimulants to the antenna, we identified four distinct types of interneurons (projection neurons) that relay pheromonal signals from a single olfactory glomerulus of the first-order olfactory center (antennal lobe) to higher-order centers in the ipsilateral hemibrain. All glomeruli innervated by pheromone-responsive projection neurons clustered near the antennal nerve entrance of the antennal lobe. The projection neuron with dendrites in the largest glomerulus was tuned specifically to periplanone-D, and adding other components to periplanone-D counteracted the excitation elicited by periplanone-D alone. Likewise, the projection neuron with dendrites in the second largest glomerulus and that with dendrites in a medium-sized glomerulus were tuned to periplanone-A and periplanone-B, respectively. Our results are, therefore, consistent with behavioral findings that periplanone-D alone acts as a primary sex attractant and that other components act as potential behavioral antagonists. Moreover, a comparison of the glomeruli in P. fuliginosa and P. americana suggested that there are differences in the sizes of homologous glomeruli, as well as in the ligands they process.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced cell survival in prepubertal testicular tissue cryopreserved with membrane lipids and antioxidants rich cryopreservation medium.","authors":"Reyon Dcunha, Anjana Aravind, Smitha Bhaskar, Sadhana Mutalik, Srinivas Mutalik, Sneha Guruprasad Kalthur, Anujith Kumar, Padmaraj Hegde, Satish Kumar Adiga, Yulian Zhao, Nagarajan Kannan, Thottethodi Subrahmanya Keshava Prasad, Guruprasad Kalthur","doi":"10.1007/s00441-024-03930-6","DOIUrl":"10.1007/s00441-024-03930-6","url":null,"abstract":"<p><p>The present study explores the advantages of enriching the freezing medium with membrane lipids and antioxidants in improving the outcome of prepubertal testicular tissue cryopreservation. For the study, testicular tissue from Swiss albino mice of prepubertal age group (2 weeks) was cryopreserved by slow freezing method either in control freezing medium (CFM; containing DMSO and FBS in DMEM/F12) or test freezing medium (TFM; containing soy lecithin, phosphatidylserine, phosphatidylethanolamine, cholesterol, vitamin C, sodium selenite, DMSO and FBS in DMEM/F12 medium) and stored in liquid nitrogen for at least one week. The tissues were thawed and enzymatically digested to assess viability, DNA damage, and oxidative stress in the testicular cells. The results indicate that TFM significantly mitigated freeze-thaw-induced cell death, DNA damage, and lipid peroxidation compared to tissue cryopreserved in CFM. Further, a decrease in Cyt C, Caspase-3, and an increase in Gpx4 mRNA transcripts were observed in tissues frozen with TFM. Spermatogonial germ cells (SGCs) collected from tissues frozen with TFM exhibited higher cell survival and superior DNA integrity compared to those frozen in CFM. Proteomic analysis revealed that SGCs experienced a lower degree of freeze-thaw-induced damage when cryopreserved in TFM, as evident from an increase in the level of proteins involved in mitigating the heat stress response, transcriptional and translational machinery. These results emphasize the beneficial role of membrane lipids and antioxidants in enhancing the cryosurvival of prepubertal testicular tissue offering a significant stride towards improving the clinical outcome of prepubertal testicular tissue cryopreservation.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"97-117"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2025-01-01Epub Date: 2024-12-04DOI: 10.1007/s00441-024-03942-2
Małgorzata Durbas
{"title":"Expanding on roles of pleckstrin homology-like domain family A member 1 protein.","authors":"Małgorzata Durbas","doi":"10.1007/s00441-024-03942-2","DOIUrl":"10.1007/s00441-024-03942-2","url":null,"abstract":"<p><p>Pleckstrin homology-like domain, family A, member 1 (PHLDA1), one of the three members of PHLDA (1-3) family, has been reported to be expressed in mammalian cells and tissues and play diverse roles in various biological processes such as apoptosis, pyroptosis, and differentiation. Nevertheless, new roles and mechanisms of PHLDA1 action have come to light, with some needing further clarification. The major aim of the publication is to review proapoptotic or antiapoptotic roles of PHLDA1 in cancer, including ample evidence on PHLDA1 role as a tumor suppressor gene or oncogene and its influence on tumor progression. The role of PHLDA1 as a prognostic marker of cancer emerges, as well as its role in drug response and resistance. PHLDA1 involvement in autophagy, endoplasmic reticulum stress, pyroptosis, or differentiation is also scrutinized. It is also important to note that the association of PHLDA1 with miRNA regulation is described. Additionally, the emerging functions of PHLDA1 are indicated, specifically in inflammation and ischemia/reperfusion injury.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"9-25"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2025-01-01Epub Date: 2024-11-23DOI: 10.1007/s00441-024-03931-5
Shiori Yoshimura, Takuya Omotehara, Hiroki Nakata, Lynn A Birch, Gail S Prins, Koichiro Ichimura, Masahiro Itoh
{"title":"Mesonephric tubules expressing estrogen and androgen receptors remain in the rete ovarii of adult mice.","authors":"Shiori Yoshimura, Takuya Omotehara, Hiroki Nakata, Lynn A Birch, Gail S Prins, Koichiro Ichimura, Masahiro Itoh","doi":"10.1007/s00441-024-03931-5","DOIUrl":"10.1007/s00441-024-03931-5","url":null,"abstract":"<p><p>The rete ovarii and epoophoron in females are homologous structures of the rete testis and efferent/epididymal duct in males and are derived from the developing rete cells and mesonephric tubules, respectively. Sex steroid hormones play a critical role in reproductive function for both sexes, and we recently reported expression patterns of sex steroid receptors in developing male reproductive tracts. However, their expression patterns in females remain unclear. We, therefore, investigated the three-dimensional structure and expression patterns of sex steroid receptors in the rete ovarii and epoophoron of fetal and adult female mice. In adult females, the epoophoron was not adherent to the rete ovarii. The rete ovarii had a bursa-like structure, with its extra-ovarian region protruding toward the epoophoron. A marker for mesonephric tubules, PAX2 (Paired box 2), was detected in the epoophoron and a small population of epithelial cells in the extra-ovarian rete ovarii. These epithelial cells expressed estrogen receptor and androgen receptor. During development, mesonephric tubules were adherent to the rete ovarii at first, but as the development proceeded, the continuity was lost due to the interruption of the tubule rather than separation between the tip of the tubule and rete ovarii. These findings suggest that epithelial cells, originating from the mesonephric tubules, persist even in the adult rete ovarii with maintained expressions of receptors for estrogen and androgen.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"85-96"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}