Aida Shakouri-Motlagh, Andrea J O'Connor, Shaun P Brennecke, Daniel E Heath, Bill Kalionis
{"title":"Extracellular vesicles support increased expansion of mesenchymal stromal cells on fetal membrane-derived decellularized extracellular matrix.","authors":"Aida Shakouri-Motlagh, Andrea J O'Connor, Shaun P Brennecke, Daniel E Heath, Bill Kalionis","doi":"10.1007/s00441-024-03946-y","DOIUrl":"https://doi.org/10.1007/s00441-024-03946-y","url":null,"abstract":"<p><p>Decidual mesenchymal stromal cells (DMSC) were the source of extracellular vesicles (DMSC_EV). The xCELLigence real-time cell growth assay revealed increasing concentrations of EVs decreased DMSC attachment in the early growth phase but stimulated DMSC proliferation at day 7 when grown on tissue culture plastic (TCP). DMSC attachment and proliferation varied depending on the growth surface and DMSC_EV supplementation. DMSC attachment increased on decellularized and solubilized amniotic (s-dAM) whether or not EVs were added. Only Matrigel substrate increased DMSC attachment with added EVs. The addition of EVs increased DMSC proliferation only on the s-dAM substrate. DMSCs were more motile on s-dAM and decellularized and solubilized chorionic (s-dCM) membranes following EV addition. The osteogenic potential of DMSCs was improved on s-dAM substrates when supplanted with EVs. Finally, the levels of reactive oxygen species in DMSCs varied depending on the substrate but not on added EVs. We show that the addition of in vitro EVs isolated from the source being expanded (i.e., DMSCs) and the presence of ECM improve DMSC behaviours during ex vivo expansion. The inclusion of two key components of the MSC niche, EVs and ECM, benefitted the ex vivo expansion of MSCs. Added in vitro EVs increased the proliferation of DMSCs when grown on s-dAM but not on s-dCM, whereas they improved DMSC mobility on both surfaces. Testing different ECMs could be used to promote specific desired characteristics of DMSCs, and different combinations of EVs and ECM may enhance desirable MSC characteristics for specific therapeutic settings.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Foxa1 disruption enhances human cell integration in human-mouse interspecies chimeras.","authors":"Li-Na Wang, Jun-Shuang Jia, Xing-Long Yang, Yue-Ting Wen, Jing-Xian Liu, Deng-Ke Li, Xing-Rui Chen, Jia-Hong Wang, Ji-Ke Li, Zhong-Xi Huang, Kai-Tai Yao","doi":"10.1007/s00441-024-03941-3","DOIUrl":"https://doi.org/10.1007/s00441-024-03941-3","url":null,"abstract":"<p><p>Blastocyst complementation can potentially generate a rodent model with humanized nasopharyngeal epithelium (NE) that supports sustained Epstein-Barr virus (EBV) infection, enabling comprehensive studies of EBV biology in nasopharyngeal carcinoma. However, during this process, the specific gene knockouts required to establish a developmental niche for NE remain unclear. We performed bioinformatics analyses and generated Foxa1 mutant mice to confirm that Foxa1 disruption could potentially create a developmental niche for NE. Subsequently, MYD88-inactivated human pluripotent stem cells (hPSCs) were constructed and complemented with Foxa1-deficient mouse blastocysts, with Nosip-deficient mouse blastocysts as a control. The chimerism of human cells in mouse embryos was evaluated from E8.5 to E12.5 using genomic DNA PCR and immunohistochemistry. Our bioinformatics analysis indicated that the expression patterns of Foxa1 in E8.5 to E16.5 mouse embryos underscore its critical role in NE development. The generated mice with Foxa1 disordered region mutations displayed morphological abnormality in NE, suggesting Foxa1-knockouts could potentially establish a developmental niche for NE. In chimeric assays, human cells integrated into 80.00% of Foxa1-deficient embryos, compared with the 4.17% in controls. Immunohistochemistry results revealed robust proliferation of human cells in Foxa1-deficient mouse embryos. However, chimeras from Foxa1-deficient mouse embryos did not survive beyond E10.5, hindering the evaluation of human cell integration in mouse NE. Foxa1 disruption in mouse embryos significantly enhances the integration of human cells in human-mouse interspecies chimeras, thereby facilitating the generation of endoderm-derived organs through blastocyst complementation. Overcoming chimeras' embryonic lethality is crucial for successfully generating humanized NE in Foxa1-deficient mouse embryos.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Otto Baumann, Feng Cheng, Frank Kirschbaum, Ralph Tiedemann
{"title":"Organization of the stalk system on electrocytes in mormyrid weakly electric fish Campylomormyrus compressirostris.","authors":"Otto Baumann, Feng Cheng, Frank Kirschbaum, Ralph Tiedemann","doi":"10.1007/s00441-024-03938-y","DOIUrl":"https://doi.org/10.1007/s00441-024-03938-y","url":null,"abstract":"<p><p>The adult electric organ in weakly electric mormyrid fish consists of action-potential-generating electrocytes, structurally and functionally modified skeletal muscle cells. The electrocytes have a disc-shaped portion and, on one of its sides, numerous thin processes, termed stalklets. These unite to stalks leading to a single main stalk that carries the innervation site. Here, we describe the 3-dimensional layout of the stalklet/stalk system in adult Campylomormyrus compressirostris by differential interference contrast microscopy and confocal fluorescence microscopy. Using antibodies against Na<sup>+</sup>/K<sup>+</sup>-ATPase α-subunit and plasma membrane Ca<sup>2+</sup>-ATPase, we show that these ion pumps are differentially distributed over the stalklet/stalk system, with plasma membrane Ca<sup>2+</sup>-ATPase being enriched on the stalklet membrane. Stalklets are distributed and organized in a quite uniform pattern on the posterior face of the electrocyte disc and fuse to terminal stalks. The latter then unite in a mostly dichotomic mode to stalks of increasing thickness, with the main stalk measuring about 100 µm in diameter. We further analyse the structural organization of stalklets and stalks, with a characteristic cytoskeletal system of bundled actin filaments in the centre and nuclei in subsurface position. These results suggest that the stalklet/stalk system is adapted in its structural layout to generate an action potential highly synchronized over the entire disc-portion of the electrocyte, accounting for the short electric organ discharge in this species. Our results suggest that actin-related proteins overexpressed in electrocytes, as shown previously by transcriptome analysis, may be involved in the organization of the unique F-actin system in stalklets and stalks.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142863059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michał M Hryciuk, Filip Schröter, Svenja Claaßen, Christine Aurich, Jella Wauters, Celina Haße, Beate C Braun
{"title":"Development of a 3D in vitro model to study corpus luteum of felids based on luteinized cells from antral follicles.","authors":"Michał M Hryciuk, Filip Schröter, Svenja Claaßen, Christine Aurich, Jella Wauters, Celina Haße, Beate C Braun","doi":"10.1007/s00441-024-03937-z","DOIUrl":"https://doi.org/10.1007/s00441-024-03937-z","url":null,"abstract":"<p><p>The study aimed to establish a long-term 3D cell culture model using luteinized follicular cells to investigate the functionality and life cycle of the CL in felids. A mixture of cell types from antral follicles was luteinized in vitro and cultured for up to 23 days. The method, initially applied to the domestic cat, was later extended to Persian and Clouded leopards. Antral follicles were isolated and digested with enzymes; then, the cells were subjected to culture. Experimental subsets were treated with/without 1 µg/mL cloprostenol to validate the cell culture model's suitability for functional studies. In domestic cat samples, microscopic evaluation indicated luteinization, which was confirmed by increased progestagen concentrations and IHC staining for HSD3B and CYP11A1. The gene expression of selected steroidogenic factors (HSD3B1, STAR, CYP11A1) and hormone receptors (LHCGR, PTGFR, PRLR) significantly increased, while CYP17A1 expression decreased. Cloprostenol treatment resulted in reduction of steroidogenic activity, proving its suitability for functional studies. Persian and Clouded leopards' cell cultures exhibited similar patterns in progestagen secretion and gene expression, compared to domestic cats. This model, with its defined luteinization, as well as high and stable progestagen production, allows future investigation of factors regulating CL life cycle and function.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancer Enh483 regulates myoblast proliferation and differentiation of buffalo myoblasts by targeting FAXC.","authors":"Yaling Chen, Jiahui Zhao, Cuiwei Zhong, Yujin Kang, Zhaocheng Xiong, Jieping Huang, Zhipeng Li, Qingyou Liu, Deshun Shi, Xinxin Li, Jian Wang, Hui Li","doi":"10.1007/s00441-024-03944-0","DOIUrl":"https://doi.org/10.1007/s00441-024-03944-0","url":null,"abstract":"<p><p>A detailed understanding of the precise regulatory mechanisms governing buffalo skeletal muscle is crucial for improving meat quality and yield. Proper skeletal muscle fate decisions necessitate the accurate regulation of key enhancers. This study screened nine potential enhancers linked to muscle development by analysing ATAC-seq data from buffalo myoblasts during the proliferative and differentiative phases. The enhancer activity of these candidates was confirmed in buffalo myoblasts, C2C12, and human skeletal muscle myoblasts using a dual-luciferase reporter system. The CRISPRi system and RT-qPCR were used to test the effects of 9 candidate enhancers on buffalo myoblasts. The active enhancer, Enh483, was selected based on its significant impact. Upon successful inhibition of Enh483 using CRISPRi, decreases in the expression of buffalo myogenic proliferation marker genes (PCNA, CyclinD1, and CDK2) were observed via RT-qPCR and Western blot. Subsequent proliferation assays using CCK-8 and EdU confirmed the promotive effect of Enh483 on buffalo myogenic cell proliferation. Following a 5-day differentiation induction period, changes in the expression of differentiation marker genes (MyoD1, MyoG, and MyHC) were analysed using RT-qPCR and Western blot. Additionally, fused myotube numbers were quantified, and the impact of Enh483 on buffalo myogenic cell differentiation was assessed through immunofluorescence. Our findings indicate that Enh483 facilitates buffalo myogenic cell differentiation. Further interaction analysis utilising 3C-PCR revealed a direct association between Enh483 and the FAXC promoter. In summary, the results from this study lay a foundational framework for deciphering the intricate regulatory mechanisms underpinning buffalo muscle development.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142834056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A brief history of insect neuropeptide and peptide hormone research.","authors":"Dick R Nässel","doi":"10.1007/s00441-024-03936-0","DOIUrl":"https://doi.org/10.1007/s00441-024-03936-0","url":null,"abstract":"<p><p>This review briefly summarizes 50 years of research on insect neuropeptide and peptide hormone (collectively abbreviated NPH) signaling, starting with the sequencing of proctolin in 1975. The first 25 years, before the sequencing of the Drosophila genome, were characterized by efforts to identify novel NPHs by biochemical means, mapping of their distribution in neurons, neurosecretory cells, and endocrine cells of the intestine. Functional studies of NPHs were predominantly dealing with hormonal aspects of peptides and many employed ex vivo assays. With the annotation of the Drosophila genome, and more specifically of the NPHs and their receptors in Drosophila and other insects, a new era followed. This started with matching of NPH ligands to orphan receptors, and studies to localize NPHs with improved detection methods. Important advances were made with introduction of a rich repertoire of innovative molecular genetic approaches to localize and interfere with expression or function of NPHs and their receptors. These methods enabled cell- or circuit-specific interference with NPH signaling for in vivo assays to determine roles in behavior and physiology, imaging of neuronal activity, and analysis of connectivity in peptidergic circuits. Recent years have seen a dramatic increase in reports on the multiple functions of NPHs in development, physiology and behavior. Importantly, we can now appreciate the pleiotropic functions of NPHs, as well as the functional peptidergic \"networks\" where state dependent NPH signaling ensures behavioral plasticity and systemic homeostasis.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arianna Casini, Giorgio Vivacqua, Ludovica Ceci, Stefano Leone, Rosa Vaccaro, Marco Tagliafierro, Filippo Maria Bassi, Sara Vitale, Emanuele Bocci, Luigi Pannarale, Simone Carotti, Antonio Franchitto, Patrizia Mancini, Roberta Sferra, Antonella Vetuschi, Giovanni Latella, Paolo Onori, Eugenio Gaudio, Romina Mancinelli
{"title":"TNBS colitis induces architectural changes and alpha-synuclein overexpression in mouse distal colon: A morphological study.","authors":"Arianna Casini, Giorgio Vivacqua, Ludovica Ceci, Stefano Leone, Rosa Vaccaro, Marco Tagliafierro, Filippo Maria Bassi, Sara Vitale, Emanuele Bocci, Luigi Pannarale, Simone Carotti, Antonio Franchitto, Patrizia Mancini, Roberta Sferra, Antonella Vetuschi, Giovanni Latella, Paolo Onori, Eugenio Gaudio, Romina Mancinelli","doi":"10.1007/s00441-024-03932-4","DOIUrl":"https://doi.org/10.1007/s00441-024-03932-4","url":null,"abstract":"<p><p>Alpha-synuclein (α-syn) is widely expressed in presynaptic neuron terminals, and its structural alterations play an important role in the pathogenesis of Parkinson's disease (PD). Aggregated α-syn has been found in brain, in the peripheral nerves of the enteric nervous system (ENS) and in the intestinal neuroendocrine cells during synucleinopathies and inflammatory bowel disorders. In the present study, we evaluated the histomorphological features of murine colon with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, a common model of colitis. Thereafter, we investigated the expression of α-syn, Toll-like receptor 4 (TLR4), choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), and calcitonin-like receptor (CALCR). Finally, we investigated the presence of phosphorylated α-syn (pS129 α-syn) aggregates and their relationship with inflammatory cells. Colon from TNBS mice showed an increase in inflammatory cells infiltrate and significative changes in the architecture of the intestinal mucosa. α-Syn expression was significantly higher in inflamed colon. VIP was increased in both the mucosa and muscularis externa of TNBS mice, while TH, CGRP, and CALCR were significantly reduced in TNBS mice. Amyloid aggregates of pS129 α-syn were detectable in the ENS, as in the macrophages around the glands of the mucosa correlating with the markers of inflammation. This study describes - for the first time - the altered expression of α-syn and the occurrence of amyloid α-syn aggregates in the inflammatory cells under colitis, supporting the critical role of bowel inflammation in synucleinopathies and the involvement of α-syn in IBD.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An Thai, Christian Doescher, Nawfal Kamal, Darren Teramoto, Cameron Fung, Ed Cha, Vy La, Pauline Cheng, Sharona Sedighim, Angelo Keklikian, Finosh G Thankam
{"title":"Single cell transcriptomics profiling of the stromal cells in the pathologic association of ribosomal proteins in the ischemic myocardium and epicardial fat.","authors":"An Thai, Christian Doescher, Nawfal Kamal, Darren Teramoto, Cameron Fung, Ed Cha, Vy La, Pauline Cheng, Sharona Sedighim, Angelo Keklikian, Finosh G Thankam","doi":"10.1007/s00441-024-03933-3","DOIUrl":"https://doi.org/10.1007/s00441-024-03933-3","url":null,"abstract":"<p><p>Sustenance of ischemia in the surviving cardiac tissue following myocardial infarction (MI) elicits a proinflammatory milieu resulting in subsequent pathological episodes. Also, the activation and release of ribosomal proteins under ischemic insults have been unveiled; however, their extra ribosomal functions are unknown. We identified the ribosomal proteins including RPL10A, RPL14, RPL30, RPS18, FAU-40 (RPS30), and RPSA (Laminin Receptor, LR) in the vesicles of ischemia challenged epicardial adipose tissue derived stromal cells (EATDS). The present study aimed to assess the association of these proteins in the epicardial adipose tissues (EAT) and left ventricular (LV) myocardium and isolated stromal cells (EATDS and LVSCs) from hyperlipidemic (HL), MI and coronary artery bypass graft (CABG) swine models. The findings revealed an upregulation of RPL10A, RPL14, RPL30, RPS18, RPS30, and RPSA in the LV tissues of CABG and HL swine with a concomitant reduction in the MI group. RPS30 displayed similar upregulation in EAT, whereas the expression of other ribosomal proteins was not significantly altered. Additionally, the ischemic LVSCs and EATDS displayed altered expression status of these genes compared to the control. Also, the RPS18 + , RPL30 + and RPSA + LVSCs favored ischemia and revealed similar anti-inflammatory and regenerative sub-phenotypes reflecting the protective/survival mechanisms. Further understanding regarding the underlying molecular mechanisms and functions of these ribosomal proteins offers immense translational opportunities in the better management of ischemic cardiac complications.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142784238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expanding on roles of pleckstrin homology-like domain family A member 1 protein.","authors":"Małgorzata Durbas","doi":"10.1007/s00441-024-03942-2","DOIUrl":"https://doi.org/10.1007/s00441-024-03942-2","url":null,"abstract":"<p><p>Pleckstrin homology-like domain, family A, member 1 (PHLDA1), one of the three members of PHLDA (1-3) family, has been reported to be expressed in mammalian cells and tissues and play diverse roles in various biological processes such as apoptosis, pyroptosis, and differentiation. Nevertheless, new roles and mechanisms of PHLDA1 action have come to light, with some needing further clarification. The major aim of the publication is to review proapoptotic or antiapoptotic roles of PHLDA1 in cancer, including ample evidence on PHLDA1 role as a tumor suppressor gene or oncogene and its influence on tumor progression. The role of PHLDA1 as a prognostic marker of cancer emerges, as well as its role in drug response and resistance. PHLDA1 involvement in autophagy, endoplasmic reticulum stress, pyroptosis, or differentiation is also scrutinized. It is also important to note that the association of PHLDA1 with miRNA regulation is described. Additionally, the emerging functions of PHLDA1 are indicated, specifically in inflammation and ischemia/reperfusion injury.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2024-12-01Epub Date: 2024-10-23DOI: 10.1007/s00441-024-03925-3
Amira Fathy Ahmed, Maha Ahmed Madi, Azza Hussein Ali, Sahar A Mokhemer
{"title":"The ameliorating effects of adipose-derived stromal vascular fraction cells on blue light-induced rat retinal injury via modulation of TLR4 signaling, apoptosis, and glial cell activity.","authors":"Amira Fathy Ahmed, Maha Ahmed Madi, Azza Hussein Ali, Sahar A Mokhemer","doi":"10.1007/s00441-024-03925-3","DOIUrl":"10.1007/s00441-024-03925-3","url":null,"abstract":"<p><p>Blue light (BL)-induced retinal injury has become a very common problem due to over exposure to blue light-emitting sources. This study aimed to investigate the possible ameliorating impact of stromal vascular fraction cells (SVFCs) on BL-induced retinal injury. Forty male albino rats were randomly allocated into four groups. The control group rats were kept in 12-h light/12-h dark. Rats of SVFC-control as the control group, but rats were intravenously injected once by SVFCs. Rats of both the BL-group and BL-SVFC group were exposed to BL for 2 weeks; then rats of the BL-SVFC group were intravenously injected once by SVFCs. Following the BL exposure, rats were kept for 8 weeks. Physical and physiological studies were performed; then retinal tissues were collected for biochemical and histological studies. The BL-group showed physical and physiological changes indicating affection of the visual function. Biochemical marker assessment showed a significant increase in MDA, TLR4 and MYD88 tissue levels with a significant decrease in TAC levels. Histological and ultrastructural assessment showed disruption of the normal histological architecture with retinal pigment epithelium, photoreceptors, and ganglion cell deterioration. A significant increase in NF-κB, caspase-3, and GFAP immunoreactivity was also detected. BL-SVFC group showed a significant improvement in physical, physiological, and biochemical parameters. Retinal tissues revealed amelioration of retinal structural and ultrastructural deterioration and a significant decrease in NF-κB and caspase-3 immunoreactivity with a significant increase in GFAP immunoreaction. This study concluded that SVFCs could ameliorate the BL-induced retinal injury through TLR-4/MYD-88/NF-κB signaling inhibition, regenerative, anti-oxidative, and anti-apoptotic effects.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"207-225"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}