Jing Wang, Yiqiong Yang, Yang Xu, Zhipeng Xu, Xiaozhi Zhao, Ruipeng Jia, Yutian Dai
{"title":"Correction to: Long noncoding RNA XIST inhibition promotes Leydig cell apoptosis by acting as a competing endogenous RNA for microRNA‑145a‑5p that targets SIRT1 in late‑onset hypogonadism.","authors":"Jing Wang, Yiqiong Yang, Yang Xu, Zhipeng Xu, Xiaozhi Zhao, Ruipeng Jia, Yutian Dai","doi":"10.1007/s00441-025-03963-5","DOIUrl":"https://doi.org/10.1007/s00441-025-03963-5","url":null,"abstract":"","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143771512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keywan Mortezaee, Neda Khanlarkhani, Fatemeh Sabbaghziarani, Saeid Nekoonam, Jamal Majidpoor, Amir Hosseini, Parichehr Pasbakhsh, Iraj Ragerdi Kashani, Adib Zendedel
{"title":"Retraction Note to: Preconditioning with melatonin improves therapeutic outcomes of bone marrow-derived mesenchymal stem cells in targeting liver fibrosis induced by CCl4.","authors":"Keywan Mortezaee, Neda Khanlarkhani, Fatemeh Sabbaghziarani, Saeid Nekoonam, Jamal Majidpoor, Amir Hosseini, Parichehr Pasbakhsh, Iraj Ragerdi Kashani, Adib Zendedel","doi":"10.1007/s00441-025-03959-1","DOIUrl":"10.1007/s00441-025-03959-1","url":null,"abstract":"","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"99"},"PeriodicalIF":3.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2025-04-01Epub Date: 2025-02-12DOI: 10.1007/s00441-025-03956-4
Sivaraju C, Joby Joseph
{"title":"Gross anatomy of the visual processing centers of Hieroglyphus banian.","authors":"Sivaraju C, Joby Joseph","doi":"10.1007/s00441-025-03956-4","DOIUrl":"10.1007/s00441-025-03956-4","url":null,"abstract":"<p><p>Hieroglyphus banian (H. banian) is a grasshopper species, endemic to South Asia. The optic lobe in Acrididae has been characterized to a great extent in orthoptera, predominantly using Locust species like Schistocerca gregaria, Schistocerca americana, and Locusta migratoria, which are closely related to each other. In this work, we characterize the anatomical features of the optic lobe and associated pathway in the grasshopper species H. banian using tract tracing, immunohistochemistry, and intracellular fills. All the areas of the visual pathways that have been reported in the other orthoptera species could be identified in H. banian. Visual pathways exhibited similar structure and connectivity as shown in immunohistochemistry and tract-tracing results supporting the conservation of these features across species within Acrididae. Two new structures in the posterior protocerebrum, PS1 and PS2 with prominent innervations from the optic lobe were identified. Novel structure PS1 is innervated from medulla via PS1T and, PS2 from aMe via PS2T, both new tracts we have identified.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"35-49"},"PeriodicalIF":3.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sophia Pankoke, Lea Gerling, Matthias Ochs, Christian Mühlfeld, Julia Schipke
{"title":"Sucrose- and fat-related metabolic states influence the adaptation of the pulmonary lipid metabolism to hypoxia.","authors":"Sophia Pankoke, Lea Gerling, Matthias Ochs, Christian Mühlfeld, Julia Schipke","doi":"10.1007/s00441-025-03968-0","DOIUrl":"https://doi.org/10.1007/s00441-025-03968-0","url":null,"abstract":"<p><p>Pulmonary surfactant is essential for lung function and consists mainly of lipids, almost half of which in adult mammals originate from de novo synthesis in alveolar epithelial type-2 (AE2) cells. Obesogenic nutrition and hypoxia coexist in obese patients with chronic lung diseases. This study tested the hypothesis that diet-induced obesity and chronic hypoxia alter lipid metabolism and thereby deteriorate surfactant homeostasis. Male C57BL/6N mice were fed control diet (4% fat, 6% sucrose; CD), high-sucrose diet (4% fat, 46% sucrose; HSD) or high-fat diet (35% fat, 7% sucrose; HFD). After 27 weeks, half of each diet group was exposed to hypoxia (13% O<sub>2</sub>, Hyp) for 3 weeks. After 30 weeks, lung mechanics were assessed, and the blood, livers, and lungs were analyzed. In CD-fed mice, hypoxia induced lung mechanical changes indicative of reduced elastic recoil properties, as well as smaller lamellar bodies (LBs) and higher composite body volumes, suggesting an increased surfactant precursor formation. HSD and HFD induced lipid accumulation in liver and AE2 cells. In HSD-Hyp and HFD-Hyp, LB volumes per alveolar surface area were elevated, indicating compensatory increases in intracellular surfactant pools which were absent in CD-Hyp. Additionally, hypoxia-related lung mechanics alterations were less pronounced in HSD-Hyp and HFD-Hyp. Lung proteome analysis revealed that only a few lipid metabolism-associated proteins were similarly regulated within diet groups under hypoxia, with the most prominent changes in sucrose-fed hypoxic animals. Thus, individual diet-related metabolic states specifically affect the adaptation of the pulmonary lipid metabolism and intracellular surfactant assembly to chronic hypoxia.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143751382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2025-04-01Epub Date: 2025-02-15DOI: 10.1007/s00441-025-03957-3
Huiyue Xu, Zhipeng Fan
{"title":"The role and mechanism of Schwann cells in the repair of peripheral nerve injury.","authors":"Huiyue Xu, Zhipeng Fan","doi":"10.1007/s00441-025-03957-3","DOIUrl":"10.1007/s00441-025-03957-3","url":null,"abstract":"<p><p>Limb injuries such as severe strains, deep cuts, gunshot wounds, and ischemia can cause peripheral nerve damage. This can result in a range of clinical symptoms including sensory deficits, limb paralysis and atrophy, neuralgia, and sweating abnormalities in the innervated areas affected by the damaged nerves. These symptoms can have a significant impact on patients' daily lives and work. Despite existing clinical treatments, some patients cannot achieve satisfactory therapeutic effects and continue to experience persistent paralysis and pain. Schwann cells are responsible for repairing and regenerating damaged nerves in the peripheral nervous system. They play a crucial role in the healing of nerve injuries and are essential for the restoration of proper nerve function. An increasing number of studies have focused on the various regulatory mechanisms that specifically affect the repair of damage by Schwann cells. This article aims to provide information on the different types of peripheral nerve injuries and their available treatments. We also discuss the various molecular mechanisms that regulate Schwann cell function during peripheral nerve repair and how they can be used to promote nerve repair and regeneration. Furthermore, we explore the potential therapeutic applications of precision regulation of Schwann cells for the treatment of peripheral nerve injuries.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"81-95"},"PeriodicalIF":3.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2025-04-01Epub Date: 2025-02-27DOI: 10.1007/s00441-025-03958-2
Carolina Rego Rodrigues, Gurpreet Kaur Aulakh, Andrea Kroeker, Swarali S Kulkarni, Jocelyne Lew, Darryl Falzarano, Baljit Singh
{"title":"Recruitment of pulmonary intravascular macrophages in SARS-CoV-2 infected hamsters.","authors":"Carolina Rego Rodrigues, Gurpreet Kaur Aulakh, Andrea Kroeker, Swarali S Kulkarni, Jocelyne Lew, Darryl Falzarano, Baljit Singh","doi":"10.1007/s00441-025-03958-2","DOIUrl":"10.1007/s00441-025-03958-2","url":null,"abstract":"<p><p>The mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe lung inflammation and mortality remain unclear. While the role of alveolar macrophages in COVID-19 is known, data on pulmonary intravascular macrophages (PIMs) is lacking. PIMs are key inflammatory cells present in species like cattle and pigs. Though constitutively absent in humans and rodents, their recruitment in rodents triggers exaggerated inflammation. We investigated the recruitment of PIMs and other immune cells, using immunofluorescence, hematoxylin and eosin (H&E) staining, and immunogold labeling in a hamster model of SARS-CoV-2 infection. Syrian golden hamsters were divided into 6 groups: uninfected control, unvaccinated-infected at 2-, 5-, and 14-days post infection (dpi) and vaccinated-infected at 5- and 14-dpi. Lung tissues were analyzed for neutrophils (myeloperoxidase), monocytes/macrophages (CCR2, CX3CR1), macrophages (IBA-1), and T cells (CD3). Septal macrophages increased at 2-, 5-, and 14-dpi in infected animals vs. control. CX3CR1 + cells decreased at 14-dpi in unvaccinated animals, but CX3CR1/CCR2 double positive cells were higher at 5-dpi, indicating a pro-inflammatory macrophage phenotype. PIMs were confirmed by transmission electron microscopy. These are the first data showing recruitment of pro-inflammatory PIMs in SARS-CoV-2 infected lungs.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"1-15"},"PeriodicalIF":3.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2025-04-01Epub Date: 2025-02-07DOI: 10.1007/s00441-025-03953-7
Kangxia Li, Xiang Ji, Shan Tian, Jian Li, Yizhu Tian, Xiaoqing Ma, Huanping Li, Hong Zhang, Cai-Tao Chen, Wei Gu
{"title":"Oxidative stress in asthma pathogenesis: mechanistic insights and implications for airway smooth muscle dysfunction.","authors":"Kangxia Li, Xiang Ji, Shan Tian, Jian Li, Yizhu Tian, Xiaoqing Ma, Huanping Li, Hong Zhang, Cai-Tao Chen, Wei Gu","doi":"10.1007/s00441-025-03953-7","DOIUrl":"10.1007/s00441-025-03953-7","url":null,"abstract":"<p><p>Airway smooth muscle (ASM) dysfunction is a key factor in the narrowing of airways in asthma patients, characterized by excessive secretion of inflammatory factors, increased mass, and amplified contractile responses. These pathological features are instrumental in the propagation of airway inflammation, structural remodeling, and the escalation of airway hyperresponsiveness (AHR), which are also principal factors underlying the limitations of current therapeutic strategies. In asthmatic ASM, an imbalance between oxidant production and antioxidant defenses culminates in oxidative stress, which is involved in the excessive secretion of inflammatory factors, increased mass, and amplified contractile responses of ASM, and is a critical etiological factor implicated in the dysregulation of ASM function. The molecular pathways through which oxidative stress exerts its effects on ASM in asthma are multifaceted, with the Nrf2/HO-1, MAPK, and PI3K/Akt pathways being particularly noteworthy. These characteristic pathways play a potential role by connecting with different upstream and downstream signaling molecules and are involved in the amplification of ASM inflammatory responses, increased mass, and AHR. This review provides a comprehensive synthesis of the phenotypic expression of ASM dysfunction in asthma, the interplay between oxidants and antioxidants, and the evidence base and molecular underpinnings linking oxidative stress to ASM dysfunction. Given the profound implications of ASM dysfunction on the airflow limitation in asthma and the seminal role of oxidative stress in this process, a deeper exploration of these mechanisms is essential for unraveling the pathogenesis of asthma and may offer novel perspectives for its prophylaxis and management.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"17-34"},"PeriodicalIF":3.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell and Tissue ResearchPub Date : 2025-04-01Epub Date: 2025-01-10DOI: 10.1007/s00441-024-03935-1
Mana Domae, Masazumi Iwasaki, Hiroshi Nishino
{"title":"Neurological confirmation of periplanone-D exploitation as a primary sex pheromone and counteractions of other components in the smoky brown cockroach Periplaneta fuliginosa.","authors":"Mana Domae, Masazumi Iwasaki, Hiroshi Nishino","doi":"10.1007/s00441-024-03935-1","DOIUrl":"10.1007/s00441-024-03935-1","url":null,"abstract":"<p><p>The smoky brown cockroach, Periplaneta fuliginosa, is a peridomestic pest inhabiting broad regions of the world from temperate to subtropical zones. In common with other related species such as the American cockroach, Periplaneta americana, female-emitted sex pheromone components, named periplanones, are known to be key volatiles that elicit long-range attraction and courtship rituals in males. How periplanones are processed in the nervous system has been entirely unexplored in P. fuliginosa. By using pheromone compounds, periplanones A, B, C, and D, as stimulants to the antenna, we identified four distinct types of interneurons (projection neurons) that relay pheromonal signals from a single olfactory glomerulus of the first-order olfactory center (antennal lobe) to higher-order centers in the ipsilateral hemibrain. All glomeruli innervated by pheromone-responsive projection neurons clustered near the antennal nerve entrance of the antennal lobe. The projection neuron with dendrites in the largest glomerulus was tuned specifically to periplanone-D, and adding other components to periplanone-D counteracted the excitation elicited by periplanone-D alone. Likewise, the projection neuron with dendrites in the second largest glomerulus and that with dendrites in a medium-sized glomerulus were tuned to periplanone-A and periplanone-B, respectively. Our results are, therefore, consistent with behavioral findings that periplanone-D alone acts as a primary sex attractant and that other components act as potential behavioral antagonists. Moreover, a comparison of the glomeruli in P. fuliginosa and P. americana suggested that there are differences in the sizes of homologous glomeruli, as well as in the ligands they process.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"51-70"},"PeriodicalIF":3.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Histological study on the postnatal development of the nerve network in the rat ileal mucosa and submucosa.","authors":"Rinako Morishita, Satoki Nakanishi, Toshifumi Yokoyama, Nobuhiko Hoshi, Youhei Mantani","doi":"10.1007/s00441-025-03949-3","DOIUrl":"10.1007/s00441-025-03949-3","url":null,"abstract":"<p><p>We have previously reported detailed structures of the mucosal nerve network in the rat ileum, but the mechanisms underlying the development of this nerve network remain unclear. Therefore, we aimed to clarify the developmental process of the mucosal nerve network and submucosal neurons (SM-neurons) or ganglia (SMG), which are the main source of nerve fibers projected to the mucosa, in the rat ileum during the postnatal period. Immunohistochemistry against tubulin beta III (Tuj1) revealed that Tuj1-immunopositivities were more abundant in the lamina propria at 2 weeks old (2wk; pre-weaning) than at postnatal day 0 (P0) or 4 weeks old (4wk; post-weaning) and more frequent on the mesenteric side than on the antimesenteric side at 2wk. Hu antigen D (HuD)-immunopositive SM-neurons and SMG were also more abundantly localized on the mesenteric side than the antimesenteric side at P0 and 2wk. On the other hand, cells immunopositive for SRY-related HMG-box 10 (Sox10), which is the marker for enteric nervous system progenitor cells and enteric glial cells, were homogenously scattered in the submucosa throughout the entire circumference at all ages. Glial cell marker S100 calcium-binding protein B (S100β) in the submucosa was detected at all ages without any significant difference between the mesenteric and antimesenteric sides. These findings indicate that SMG formation and associated neurite extension into the mucosa in the rat ileum might occur preferentially on the mesenteric side by the weaning period, leading us to hypothesize that the mechanism by which the mucosal nerve network and SMG develop differs along the mesenteric-antimesenteric side axis.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"71-80"},"PeriodicalIF":3.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Neurological confirmation of periplanone-D exploitation as a primary sex pheromone and counteractions of other components in the smoky brown cockroach Periplaneta fuliginosa.","authors":"Mana Domae, Masazumi Iwasaki, Hiroshi Nishino","doi":"10.1007/s00441-025-03951-9","DOIUrl":"10.1007/s00441-025-03951-9","url":null,"abstract":"","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"97"},"PeriodicalIF":3.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}