Regulation of Aqp1 expression by osmotic balance in fenestrated endothelial cells of the posterior lobe of the pituitary.

IF 2.9 3区 生物学 Q3 CELL BIOLOGY
Takashi Nakakura, Takeshi Suzuki
{"title":"Regulation of Aqp1 expression by osmotic balance in fenestrated endothelial cells of the posterior lobe of the pituitary.","authors":"Takashi Nakakura, Takeshi Suzuki","doi":"10.1007/s00441-025-03995-x","DOIUrl":null,"url":null,"abstract":"<p><p>The posterior lobe (PL) of the vertebrate pituitary is richly vascularized with a dense network of fenestrated capillaries. In this study, we found that the expression of Aqp1, which encodes a plasma membrane-localized water channel protein, was significantly higher in endothelial fractions isolated from the rat PL than in those isolated from the anterior lobe (AL). Immunohistochemistry revealed aquaporin 1 (AQP1)-positive signals in fenestrated endothelial cells of the PL. Furthermore, immunoelectron microscopy demonstrated the presence of AQP1 signals on both the luminal and abluminal plasma membranes of these cells. AQP1 plays a pivotal role in facilitating water movement across the plasma membrane in response to changes in osmotic pressure on a cell. To investigate the effect of hyperosmolarity, we examined the expression levels of Aqp1 in the PL of water-deprived rats as well as in isolated endothelial cells of the PL cultured in a hyperosmotic medium supplemented with raffinose. Immunohistochemical analysis showed no changes in the proportion of AQP1-positive endothelial cells or in subcellular localization of AQP1 in cultured endothelial cells of the PL under hyperosmotic conditions. In contrast, analysis using quantitative real-time PCR revealed that hyperosmolar conditions significantly downregulated Aqp1 expression in cultured endothelial cells. These findings suggest that Aqp1expression in fenestrated capillaries in the PL is regulated by osmotic pressure of the interstitial fluid. Our results indicate that AQP1 is selectively expressed in fenestrated capillaries of the PL and plays a crucial role in maintaining water homeostasis in this region.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-03995-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The posterior lobe (PL) of the vertebrate pituitary is richly vascularized with a dense network of fenestrated capillaries. In this study, we found that the expression of Aqp1, which encodes a plasma membrane-localized water channel protein, was significantly higher in endothelial fractions isolated from the rat PL than in those isolated from the anterior lobe (AL). Immunohistochemistry revealed aquaporin 1 (AQP1)-positive signals in fenestrated endothelial cells of the PL. Furthermore, immunoelectron microscopy demonstrated the presence of AQP1 signals on both the luminal and abluminal plasma membranes of these cells. AQP1 plays a pivotal role in facilitating water movement across the plasma membrane in response to changes in osmotic pressure on a cell. To investigate the effect of hyperosmolarity, we examined the expression levels of Aqp1 in the PL of water-deprived rats as well as in isolated endothelial cells of the PL cultured in a hyperosmotic medium supplemented with raffinose. Immunohistochemical analysis showed no changes in the proportion of AQP1-positive endothelial cells or in subcellular localization of AQP1 in cultured endothelial cells of the PL under hyperosmotic conditions. In contrast, analysis using quantitative real-time PCR revealed that hyperosmolar conditions significantly downregulated Aqp1 expression in cultured endothelial cells. These findings suggest that Aqp1expression in fenestrated capillaries in the PL is regulated by osmotic pressure of the interstitial fluid. Our results indicate that AQP1 is selectively expressed in fenestrated capillaries of the PL and plays a crucial role in maintaining water homeostasis in this region.

垂体后叶开孔内皮细胞渗透平衡对Aqp1表达的调节。
脊椎动物垂体后叶(PL)血管丰富,有密集的开孔毛细血管网络。在这项研究中,我们发现,编码质膜定位的水通道蛋白Aqp1的表达在大鼠前叶(AL)分离的内皮细胞中明显高于前叶(AL)分离的内皮细胞。免疫组织化学显示,有孔内皮细胞中的水通道蛋白1 (AQP1)阳性信号。此外,免疫电镜显示,这些细胞的管腔和管腔质膜上都存在AQP1信号。AQP1在响应细胞渗透压变化促进水跨质膜运动中起关键作用。为了研究高渗透压的影响,我们检测了Aqp1在缺水大鼠PL中的表达水平,以及在添加棉子糖的高渗培养基中培养的PL分离内皮细胞中的表达水平。免疫组化分析显示,在高渗条件下,培养的PL内皮细胞中AQP1阳性的内皮细胞比例和AQP1的亚细胞定位没有变化。相比之下,实时荧光定量PCR分析显示,高渗条件显著下调培养内皮细胞Aqp1的表达。这些结果表明,aqp1在PL开孔毛细血管中的表达受间质液渗透压的调节。我们的研究结果表明,AQP1在PL的开孔毛细血管中选择性表达,并在维持该区域的水稳态中起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信