基于纳米体的Pannexin1通道抑制剂增加心脏缺血/再灌注后的生存。

IF 2.9 3区 生物学 Q3 CELL BIOLOGY
Olga M Rusiecka, Filippo Molica, Linda Clochard, Raf Van Campenhout, Timo W M De Groof, Viviane Bes, Nick Devoogdt, Serge Muyldermans, Mathieu Vinken, Brenda R Kwak
{"title":"基于纳米体的Pannexin1通道抑制剂增加心脏缺血/再灌注后的生存。","authors":"Olga M Rusiecka, Filippo Molica, Linda Clochard, Raf Van Campenhout, Timo W M De Groof, Viviane Bes, Nick Devoogdt, Serge Muyldermans, Mathieu Vinken, Brenda R Kwak","doi":"10.1007/s00441-025-03994-y","DOIUrl":null,"url":null,"abstract":"<p><p>Reperfusion following myocardial infarction salvages the ischemic heart but paradoxically exacerbates injury. Yet, efficient treatment for cardiac ischemia/reperfusion injury is still missing in clinics. ATP release through Pannexin1 (PANX1) channels facilitates recruitment of leukocytes to the injured myocardium. Thus, PANX1 channel inhibition might confer cardioprotection. Currently available PANX1 channel blockers lack specificity or in vivo stability. Nanobodies offer a new therapeutic modality given their high target affinity, small size, and deep tissue penetration. Nanobodies targeting Panx1 were recently introduced. Here, their target specificity and selective PANX1 channel inhibition for cardiovascular purposes were validated in vitro. The two most promising candidates were further examined in the context of cardiac ischemia/reperfusion injury. Nanobody-1 (Nb1) and Nb9 reduced neutrophil adhesion to an endothelial monolayer. Nb1 did not affect left ventricular function ex vivo; however, Nb9 tended to diminish the performance of isolated hearts. Finally, in vivo application of Nb1, but not of Nb9 or a control Nb, at the onset of reperfusion increased the survival rate of mice. However, the infarct size observed after treatment with Nb1 was similar than the one found after treatment with the control Nb. In conclusion, Nb1 efficiently and specifically inhibits ATP release from endothelial cells thereby limiting leukocyte adhesion and improving the outcome of cardiac ischemia/reperfusion in mice. This warrants further studies to unveil the detailed molecular mechanism underlying the beneficial effects of Nb1.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanobody-based Pannexin1 channel inhibitors increase survival after cardiac ischemia/reperfusion.\",\"authors\":\"Olga M Rusiecka, Filippo Molica, Linda Clochard, Raf Van Campenhout, Timo W M De Groof, Viviane Bes, Nick Devoogdt, Serge Muyldermans, Mathieu Vinken, Brenda R Kwak\",\"doi\":\"10.1007/s00441-025-03994-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reperfusion following myocardial infarction salvages the ischemic heart but paradoxically exacerbates injury. Yet, efficient treatment for cardiac ischemia/reperfusion injury is still missing in clinics. ATP release through Pannexin1 (PANX1) channels facilitates recruitment of leukocytes to the injured myocardium. Thus, PANX1 channel inhibition might confer cardioprotection. Currently available PANX1 channel blockers lack specificity or in vivo stability. Nanobodies offer a new therapeutic modality given their high target affinity, small size, and deep tissue penetration. Nanobodies targeting Panx1 were recently introduced. Here, their target specificity and selective PANX1 channel inhibition for cardiovascular purposes were validated in vitro. The two most promising candidates were further examined in the context of cardiac ischemia/reperfusion injury. Nanobody-1 (Nb1) and Nb9 reduced neutrophil adhesion to an endothelial monolayer. Nb1 did not affect left ventricular function ex vivo; however, Nb9 tended to diminish the performance of isolated hearts. Finally, in vivo application of Nb1, but not of Nb9 or a control Nb, at the onset of reperfusion increased the survival rate of mice. However, the infarct size observed after treatment with Nb1 was similar than the one found after treatment with the control Nb. In conclusion, Nb1 efficiently and specifically inhibits ATP release from endothelial cells thereby limiting leukocyte adhesion and improving the outcome of cardiac ischemia/reperfusion in mice. This warrants further studies to unveil the detailed molecular mechanism underlying the beneficial effects of Nb1.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-025-03994-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-03994-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

心肌梗死后再灌注挽救了缺血心脏,但矛盾的是加剧了损伤。然而,临床上对心脏缺血再灌注损伤的有效治疗仍然缺乏。ATP通过Pannexin1 (PANX1)通道释放,促进白细胞向受损心肌募集。因此,PANX1通道抑制可能具有心脏保护作用。目前可用的PANX1通道阻滞剂缺乏特异性或体内稳定性。纳米体由于其高靶向亲和力、小尺寸和深组织穿透性而提供了一种新的治疗方式。最近引入了靶向Panx1的纳米体。在这里,他们的靶特异性和选择性PANX1通道抑制心血管目的的体外验证。在心脏缺血/再灌注损伤的背景下,进一步研究了两种最有希望的候选药物。纳米体-1 (Nb1)和Nb9减少中性粒细胞粘附到内皮单层。Nb1对离体左心室功能无影响;然而,Nb9倾向于降低离体心脏的性能。最后,在再灌注开始时体内应用Nb1,而不是Nb9或对照Nb,可提高小鼠的存活率。然而,用Nb1治疗后观察到的梗死面积与用对照Nb治疗后观察到的梗死面积相似。综上所述,Nb1有效且特异性地抑制内皮细胞释放ATP,从而限制白细胞粘附,改善小鼠心脏缺血/再灌注的结局。这需要进一步的研究来揭示Nb1有益作用的详细分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanobody-based Pannexin1 channel inhibitors increase survival after cardiac ischemia/reperfusion.

Reperfusion following myocardial infarction salvages the ischemic heart but paradoxically exacerbates injury. Yet, efficient treatment for cardiac ischemia/reperfusion injury is still missing in clinics. ATP release through Pannexin1 (PANX1) channels facilitates recruitment of leukocytes to the injured myocardium. Thus, PANX1 channel inhibition might confer cardioprotection. Currently available PANX1 channel blockers lack specificity or in vivo stability. Nanobodies offer a new therapeutic modality given their high target affinity, small size, and deep tissue penetration. Nanobodies targeting Panx1 were recently introduced. Here, their target specificity and selective PANX1 channel inhibition for cardiovascular purposes were validated in vitro. The two most promising candidates were further examined in the context of cardiac ischemia/reperfusion injury. Nanobody-1 (Nb1) and Nb9 reduced neutrophil adhesion to an endothelial monolayer. Nb1 did not affect left ventricular function ex vivo; however, Nb9 tended to diminish the performance of isolated hearts. Finally, in vivo application of Nb1, but not of Nb9 or a control Nb, at the onset of reperfusion increased the survival rate of mice. However, the infarct size observed after treatment with Nb1 was similar than the one found after treatment with the control Nb. In conclusion, Nb1 efficiently and specifically inhibits ATP release from endothelial cells thereby limiting leukocyte adhesion and improving the outcome of cardiac ischemia/reperfusion in mice. This warrants further studies to unveil the detailed molecular mechanism underlying the beneficial effects of Nb1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信