Sara Vega-Torreblanca, Diana Cristina Pinto-Dueñas, Christian Hernández-Guzmán, Dolores Martín-Tapia, Lourdes Alarcón, Bibiana Chávez-Munguía, Lizbeth Salazar-Villatoro, Sirenia González-Pozos, Josué David Hernández-Varela, Leticia Ramírez-Martínez, Esther López-Bayghen, José Jorge Chanona-Pérez, Lorenza González-Mariscal
{"title":"ZO-2是中心粒和有丝分裂纺锤体两极的支架,增强微管稳定性,支持有丝分裂纺锤体和纤毛的正常发育。","authors":"Sara Vega-Torreblanca, Diana Cristina Pinto-Dueñas, Christian Hernández-Guzmán, Dolores Martín-Tapia, Lourdes Alarcón, Bibiana Chávez-Munguía, Lizbeth Salazar-Villatoro, Sirenia González-Pozos, Josué David Hernández-Varela, Leticia Ramírez-Martínez, Esther López-Bayghen, José Jorge Chanona-Pérez, Lorenza González-Mariscal","doi":"10.1007/s00441-025-03992-0","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies revealed the presence of several tight junction (TJ) proteins in the centrosome and their interaction with various centriolar proteins, prompting us to analyze whether this also applies to the TJ protein ZO-2. Here, we found that ZO-2 colocalizes with CEP164 in the distal appendage of the mother centriole and is also present in the pericentriolar region, mitotic spindle poles, the basal body of primary cilia, and the tail of spermatozoa. The absence of ZO-2 altered the cellular content of centriolar proteins CEP164, centriolin, and CEP135, but did not change the morphology of centrioles. ZO-2 depletion inhibits the development of astral and mitotic spindle microtubules expressing EB1. At the spindle poles, ZO-2 depletion increases the accumulation of NuMA while reducing the levels of kinesin KIF14 and the TPX2 scaffold, and the accumulation of the kinase p-Aurora, leading to a decrease in mitotic spindle length, microtubule instability, and abnormal chromosome congression. KIF14, NuMA, and p-Aurora co-immunoprecipitate with ZO-2, and NuMA and Aurora-A bind to different segments of ZO-2. At the ciliary basal body, ZO-2 depletion reduces the content of CEP164, KIF14, and IFT-B protein IFT57, while increasing the expression of p-Aurora and pAKT. These changes block primary cilium development and the response to Sonic Hedgehog signaling pathway stimulation. These results suggest that, rather than being a centrosomal architectural component, ZO-2 enhances microtubule stability and serves as a scaffold that facilitates the adequate accumulation of spindle pole and centriole proteins, allowing proper poleward spindle microtubule flux and cilia development.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZO-2 is a scaffold at the centriole and mitotic spindle poles that enhances microtubule stability and supports the proper development of mitotic spindles and cilia.\",\"authors\":\"Sara Vega-Torreblanca, Diana Cristina Pinto-Dueñas, Christian Hernández-Guzmán, Dolores Martín-Tapia, Lourdes Alarcón, Bibiana Chávez-Munguía, Lizbeth Salazar-Villatoro, Sirenia González-Pozos, Josué David Hernández-Varela, Leticia Ramírez-Martínez, Esther López-Bayghen, José Jorge Chanona-Pérez, Lorenza González-Mariscal\",\"doi\":\"10.1007/s00441-025-03992-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous studies revealed the presence of several tight junction (TJ) proteins in the centrosome and their interaction with various centriolar proteins, prompting us to analyze whether this also applies to the TJ protein ZO-2. Here, we found that ZO-2 colocalizes with CEP164 in the distal appendage of the mother centriole and is also present in the pericentriolar region, mitotic spindle poles, the basal body of primary cilia, and the tail of spermatozoa. The absence of ZO-2 altered the cellular content of centriolar proteins CEP164, centriolin, and CEP135, but did not change the morphology of centrioles. ZO-2 depletion inhibits the development of astral and mitotic spindle microtubules expressing EB1. At the spindle poles, ZO-2 depletion increases the accumulation of NuMA while reducing the levels of kinesin KIF14 and the TPX2 scaffold, and the accumulation of the kinase p-Aurora, leading to a decrease in mitotic spindle length, microtubule instability, and abnormal chromosome congression. KIF14, NuMA, and p-Aurora co-immunoprecipitate with ZO-2, and NuMA and Aurora-A bind to different segments of ZO-2. At the ciliary basal body, ZO-2 depletion reduces the content of CEP164, KIF14, and IFT-B protein IFT57, while increasing the expression of p-Aurora and pAKT. These changes block primary cilium development and the response to Sonic Hedgehog signaling pathway stimulation. These results suggest that, rather than being a centrosomal architectural component, ZO-2 enhances microtubule stability and serves as a scaffold that facilitates the adequate accumulation of spindle pole and centriole proteins, allowing proper poleward spindle microtubule flux and cilia development.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-025-03992-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-03992-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
ZO-2 is a scaffold at the centriole and mitotic spindle poles that enhances microtubule stability and supports the proper development of mitotic spindles and cilia.
Previous studies revealed the presence of several tight junction (TJ) proteins in the centrosome and their interaction with various centriolar proteins, prompting us to analyze whether this also applies to the TJ protein ZO-2. Here, we found that ZO-2 colocalizes with CEP164 in the distal appendage of the mother centriole and is also present in the pericentriolar region, mitotic spindle poles, the basal body of primary cilia, and the tail of spermatozoa. The absence of ZO-2 altered the cellular content of centriolar proteins CEP164, centriolin, and CEP135, but did not change the morphology of centrioles. ZO-2 depletion inhibits the development of astral and mitotic spindle microtubules expressing EB1. At the spindle poles, ZO-2 depletion increases the accumulation of NuMA while reducing the levels of kinesin KIF14 and the TPX2 scaffold, and the accumulation of the kinase p-Aurora, leading to a decrease in mitotic spindle length, microtubule instability, and abnormal chromosome congression. KIF14, NuMA, and p-Aurora co-immunoprecipitate with ZO-2, and NuMA and Aurora-A bind to different segments of ZO-2. At the ciliary basal body, ZO-2 depletion reduces the content of CEP164, KIF14, and IFT-B protein IFT57, while increasing the expression of p-Aurora and pAKT. These changes block primary cilium development and the response to Sonic Hedgehog signaling pathway stimulation. These results suggest that, rather than being a centrosomal architectural component, ZO-2 enhances microtubule stability and serves as a scaffold that facilitates the adequate accumulation of spindle pole and centriole proteins, allowing proper poleward spindle microtubule flux and cilia development.
期刊介绍:
The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include:
- neurobiology
- neuroendocrinology
- endocrinology
- reproductive biology
- skeletal and immune systems
- development
- stem cells
- muscle biology.