连接蛋白43在心肌缺血再灌注损伤中的作用。

IF 2.9 3区 生物学 Q3 CELL BIOLOGY
Cell and Tissue Research Pub Date : 2025-09-01 Epub Date: 2025-06-19 DOI:10.1007/s00441-025-03987-x
Marisol Ruiz-Meana, Javier Inserte, Marta Consegal, Antonio Rodríguez-Sinovas
{"title":"连接蛋白43在心肌缺血再灌注损伤中的作用。","authors":"Marisol Ruiz-Meana, Javier Inserte, Marta Consegal, Antonio Rodríguez-Sinovas","doi":"10.1007/s00441-025-03987-x","DOIUrl":null,"url":null,"abstract":"<p><p>Connexin 43 (Cx43) is the principal connexin isoform expressed in the ventricular myocardium, where it is critically involved in the pathophysiology of cardiac ischemia-reperfusion injury. Its functions in this pathological condition span at least three different fronts. First, Cx43-mediated gap junctional channels contribute to the spread of cellular damage during reperfusion, allowing the transfer of sodium ions between injured and surviving cardiomyocytes. Further, under ischemic conditions, unapposed Cx43 hemichannels exacerbate injury by promoting calcium overload, metabolite losses, and membrane potential instability. Additionally, recent evidence suggest that mitochondrial Cx43 influences oxidative stress by modulating reactive oxygen species generation through the regulation of reverse electron transfer (RET) at the mitochondrial electron transport chain. These detrimental roles of Cx43 in acute myocardial ischemia-reperfusion injury, together with its previously described involvement in ischemic preconditioning, emphasize the dual functionality and importance of Cx43 in the context of acute myocardial infarction. The scope of this review is to summarize the current knowledge on the different mechanisms by which Cx43 promotes cell damage during myocardial infarction, with special emphasis on the regulation of RET.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"297-309"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Involvement of connexin 43 in myocardial ischemia-reperfusion injury.\",\"authors\":\"Marisol Ruiz-Meana, Javier Inserte, Marta Consegal, Antonio Rodríguez-Sinovas\",\"doi\":\"10.1007/s00441-025-03987-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Connexin 43 (Cx43) is the principal connexin isoform expressed in the ventricular myocardium, where it is critically involved in the pathophysiology of cardiac ischemia-reperfusion injury. Its functions in this pathological condition span at least three different fronts. First, Cx43-mediated gap junctional channels contribute to the spread of cellular damage during reperfusion, allowing the transfer of sodium ions between injured and surviving cardiomyocytes. Further, under ischemic conditions, unapposed Cx43 hemichannels exacerbate injury by promoting calcium overload, metabolite losses, and membrane potential instability. Additionally, recent evidence suggest that mitochondrial Cx43 influences oxidative stress by modulating reactive oxygen species generation through the regulation of reverse electron transfer (RET) at the mitochondrial electron transport chain. These detrimental roles of Cx43 in acute myocardial ischemia-reperfusion injury, together with its previously described involvement in ischemic preconditioning, emphasize the dual functionality and importance of Cx43 in the context of acute myocardial infarction. The scope of this review is to summarize the current knowledge on the different mechanisms by which Cx43 promotes cell damage during myocardial infarction, with special emphasis on the regulation of RET.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":\" \",\"pages\":\"297-309\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-025-03987-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-03987-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

连接蛋白43 (Cx43)是在心室心肌中表达的主要连接蛋白异构体,在心肌缺血-再灌注损伤的病理生理中起关键作用。它在这种病理状态下的功能至少有三个不同的方面。首先,cx43介导的间隙连接通道有助于再灌注期间细胞损伤的扩散,允许钠离子在受伤和存活的心肌细胞之间转移。此外,在缺血条件下,未对抗的Cx43半通道通过促进钙超载、代谢物损失和膜电位不稳定而加剧损伤。此外,最近的证据表明,线粒体Cx43通过调节线粒体电子传递链上的反向电子转移(RET)来调节活性氧的产生,从而影响氧化应激。这些Cx43在急性心肌缺血-再灌注损伤中的有害作用,连同其先前描述的缺血预处理的参与,强调了Cx43在急性心肌梗死背景下的双重功能和重要性。这篇综述的范围是总结目前对心肌梗死期间Cx43促进细胞损伤的不同机制的了解,特别强调RET的调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Involvement of connexin 43 in myocardial ischemia-reperfusion injury.

Connexin 43 (Cx43) is the principal connexin isoform expressed in the ventricular myocardium, where it is critically involved in the pathophysiology of cardiac ischemia-reperfusion injury. Its functions in this pathological condition span at least three different fronts. First, Cx43-mediated gap junctional channels contribute to the spread of cellular damage during reperfusion, allowing the transfer of sodium ions between injured and surviving cardiomyocytes. Further, under ischemic conditions, unapposed Cx43 hemichannels exacerbate injury by promoting calcium overload, metabolite losses, and membrane potential instability. Additionally, recent evidence suggest that mitochondrial Cx43 influences oxidative stress by modulating reactive oxygen species generation through the regulation of reverse electron transfer (RET) at the mitochondrial electron transport chain. These detrimental roles of Cx43 in acute myocardial ischemia-reperfusion injury, together with its previously described involvement in ischemic preconditioning, emphasize the dual functionality and importance of Cx43 in the context of acute myocardial infarction. The scope of this review is to summarize the current knowledge on the different mechanisms by which Cx43 promotes cell damage during myocardial infarction, with special emphasis on the regulation of RET.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信