{"title":"羊水干细胞分泌蛋白的蛋白质组学分析。","authors":"Tatsanee Phermthai, Puttachart Chuaynarong, Suparat Wichitwiengrat, Kamonpat Phermthai, Sittiruk Roytrakul, Thanuch Chitthira, Sasiprapa Thongbopit","doi":"10.1007/s00441-025-03984-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) show promising therapeutic effects due to the proteins they secrete. However, MSCs from different sources exhibit only 60% similarity of proteins they secrete, suggesting that unique proteins may offer distinct therapeutic properties based on their origin. Amniotic fluid-derived MSCs (AFSCs) are promising for treating degenerative diseases and are unique in providing sufficient cells for fetal therapies. Nevertheless, their proteomic profiles remain largely undefined. This study investigated the proteomic profiles of bioactive molecules secreted by AFSCs (AFSC-se) using liquid chromatography and mass spectrometry, along with bioinformatics tools for protein function analysis. We identified over 2000 proteins in the AFSC-se that are involved in various mechanisms supporting organ development and function. The top three proteins identified were associated with organelle fusion, forebrain morphogenesis, and response to parathyroid hormone. Our findings indicate that AFSC-se has the ability to inhibit inflammation and apoptosis, which corresponds to 7.8% of the identified proteins involved in pathways related to these therapeutic effects. Furthermore, we discovered that 20% of identified proteins are associated with brain functions including synaptogenesis, neurogenesis, and neuroprotection. In conclusion, the proteomic profile of AFSC-se indicates its potential therapeutic effects. The significant presence of neuro-related proteins in AFSC-se suggests that AFSC-se may be a promising candidate for treating neurological diseases. Our work addresses existing knowledge gaps in this field.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"275-286"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411586/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proteomic analysis of secreted proteins derived from amniotic fluid stem cells.\",\"authors\":\"Tatsanee Phermthai, Puttachart Chuaynarong, Suparat Wichitwiengrat, Kamonpat Phermthai, Sittiruk Roytrakul, Thanuch Chitthira, Sasiprapa Thongbopit\",\"doi\":\"10.1007/s00441-025-03984-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mesenchymal stem cells (MSCs) show promising therapeutic effects due to the proteins they secrete. However, MSCs from different sources exhibit only 60% similarity of proteins they secrete, suggesting that unique proteins may offer distinct therapeutic properties based on their origin. Amniotic fluid-derived MSCs (AFSCs) are promising for treating degenerative diseases and are unique in providing sufficient cells for fetal therapies. Nevertheless, their proteomic profiles remain largely undefined. This study investigated the proteomic profiles of bioactive molecules secreted by AFSCs (AFSC-se) using liquid chromatography and mass spectrometry, along with bioinformatics tools for protein function analysis. We identified over 2000 proteins in the AFSC-se that are involved in various mechanisms supporting organ development and function. The top three proteins identified were associated with organelle fusion, forebrain morphogenesis, and response to parathyroid hormone. Our findings indicate that AFSC-se has the ability to inhibit inflammation and apoptosis, which corresponds to 7.8% of the identified proteins involved in pathways related to these therapeutic effects. Furthermore, we discovered that 20% of identified proteins are associated with brain functions including synaptogenesis, neurogenesis, and neuroprotection. In conclusion, the proteomic profile of AFSC-se indicates its potential therapeutic effects. The significant presence of neuro-related proteins in AFSC-se suggests that AFSC-se may be a promising candidate for treating neurological diseases. Our work addresses existing knowledge gaps in this field.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":\" \",\"pages\":\"275-286\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-025-03984-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-03984-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Proteomic analysis of secreted proteins derived from amniotic fluid stem cells.
Mesenchymal stem cells (MSCs) show promising therapeutic effects due to the proteins they secrete. However, MSCs from different sources exhibit only 60% similarity of proteins they secrete, suggesting that unique proteins may offer distinct therapeutic properties based on their origin. Amniotic fluid-derived MSCs (AFSCs) are promising for treating degenerative diseases and are unique in providing sufficient cells for fetal therapies. Nevertheless, their proteomic profiles remain largely undefined. This study investigated the proteomic profiles of bioactive molecules secreted by AFSCs (AFSC-se) using liquid chromatography and mass spectrometry, along with bioinformatics tools for protein function analysis. We identified over 2000 proteins in the AFSC-se that are involved in various mechanisms supporting organ development and function. The top three proteins identified were associated with organelle fusion, forebrain morphogenesis, and response to parathyroid hormone. Our findings indicate that AFSC-se has the ability to inhibit inflammation and apoptosis, which corresponds to 7.8% of the identified proteins involved in pathways related to these therapeutic effects. Furthermore, we discovered that 20% of identified proteins are associated with brain functions including synaptogenesis, neurogenesis, and neuroprotection. In conclusion, the proteomic profile of AFSC-se indicates its potential therapeutic effects. The significant presence of neuro-related proteins in AFSC-se suggests that AFSC-se may be a promising candidate for treating neurological diseases. Our work addresses existing knowledge gaps in this field.
期刊介绍:
The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include:
- neurobiology
- neuroendocrinology
- endocrinology
- reproductive biology
- skeletal and immune systems
- development
- stem cells
- muscle biology.