{"title":"Smarter stem cells: how AI is supercharging iPSC technology.","authors":"Hany E Marei","doi":"10.1007/s00441-025-03999-7","DOIUrl":null,"url":null,"abstract":"<p><p>Integrated with artificial intelligence (AI), induced pluripotent stem cell (iPSC) technology could enhance disease modeling, cellular biology, regenerative medicine, and pharmaceutical development. AI has enhanced iPSC differentiation, cultural conditions, and speed of disease-specific model development. Furthermore, AI-based massive omics database analysis exposes hidden biological tendencies, enhancing customized treatment. Investigating new AI algorithms will enable one to solve problems, including interpretability and data quality, resulting from AI's interaction with iPSC technology. These advances fundamentally alter stem cell research and therapeutic applications, therefore facilitating the emergence of regenerative medicine and precision healthcare. AI has evolved in biomedical research into a transformational technology unique in great data analysis, predictive modeling, and automation capacity. AI integration increases the development of patient-specific cell types for disease modeling, pharmacological research, and regenerative medicine by substantially improving IPSC-based technologies. Emphasizing changes in disease models, alternative methodologies, and cellular reprogramming, this work examines current advancements in the use of AI in iPSC technology. The argument on significant obstacles and possibilities reveals how AI could alter the objectives of iPSC research and implementation.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-03999-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated with artificial intelligence (AI), induced pluripotent stem cell (iPSC) technology could enhance disease modeling, cellular biology, regenerative medicine, and pharmaceutical development. AI has enhanced iPSC differentiation, cultural conditions, and speed of disease-specific model development. Furthermore, AI-based massive omics database analysis exposes hidden biological tendencies, enhancing customized treatment. Investigating new AI algorithms will enable one to solve problems, including interpretability and data quality, resulting from AI's interaction with iPSC technology. These advances fundamentally alter stem cell research and therapeutic applications, therefore facilitating the emergence of regenerative medicine and precision healthcare. AI has evolved in biomedical research into a transformational technology unique in great data analysis, predictive modeling, and automation capacity. AI integration increases the development of patient-specific cell types for disease modeling, pharmacological research, and regenerative medicine by substantially improving IPSC-based technologies. Emphasizing changes in disease models, alternative methodologies, and cellular reprogramming, this work examines current advancements in the use of AI in iPSC technology. The argument on significant obstacles and possibilities reveals how AI could alter the objectives of iPSC research and implementation.
期刊介绍:
The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include:
- neurobiology
- neuroendocrinology
- endocrinology
- reproductive biology
- skeletal and immune systems
- development
- stem cells
- muscle biology.